Circular shift: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Stefan Weil
Fixed code example (no const for numerical parameters, no leading underscore in function name, no special handling of some shift values
en>David Eppstein
dab cycle
 
Line 1: Line 1:
In [[mathematics]], a '''volume element''' provides a means for [[Integral|integrating]] a [[function (mathematics)|function]] with respect to [[volume]] in various coordinate systems such as [[spherical coordinates]] and [[cylindrical coordinates]]. Thus a volume element is an expression of the form
The author is known as Phil. Curing individuals is my working  [http://www.fizzlive.com/member/1215044/blog/view/3450967 spilleautomat på nett] day occupation now but I strategy on changing it. One of the extremely  [http://www.purevolume.com/fannylaroseavotou/posts/6635252/What+You+Don%27t+Know+About+Spilleautomater+Norske+Could+Be+Costing+To+More+Than+You+Think free norrman spilleautomater] best  [http://journals.fotki.com/dieterswanson/dieterswanson/entry/stsbsfdkbstdd/ spilleautomat på nett] things in the world for her is to solve puzzles and  [http://journals.fotki.com/chancegreenberg/chancegreenberg/entry/stdrkwqfffwtr/ Det er på spilleautomater med progressive jackpotter] now she is trying to make money with it.  [http://www.fizzlive.com/member/1215044/blog/view/3501726 orgesspill] Kansas is where my home  [http://journals.fotki.com/kieran05jumbkqngo/kieran05jumbkqngo/entry/stskggwsfqsft/ orgesspill] is. If you want to discover out more  [http://www.purevolume.com/fannylaroseavotou/posts/6893145/Beste+Spilleautomater+P%C3%A5+Nett+Har+Funnet+Kandidater+Iphone+Apps beste spilleautomater på nett] check out my website: http://www.[http://photo.net/gallery/tag-search/search?query_string=purevolume purevolume].com/abbyaxvdulfl/posts/6929320/Why+Everyone+Is+Dead+Wrong+About+Slotmaskiner+Er+Blant+De+Mest+Popul%C3%A6re+Casinospilleneet+And+Why.<br><br>
:<math>dV = \rho(u_1,u_2,u_3)\,du_1\,du_2\,du_3</math>
where the <math>u_i</math> are the coordinates, so that the volume of any set <math>B</math> can be computed by
:<math>\operatorname{Volume}(B) = \int_B \rho(u_1,u_2,u_3)\,du_1\,du_2\,du_3.</math>
For example, in spherical coordinates <math>dV = u_1^2\sin u_2\,du_1\,du_2\,du_3</math>, and so <math>\rho = u_1^2\sin u_2</math>.


The notion of a volume element is not limited to three-dimensions: in two-dimensions it is often known as the '''area element''', and in this setting it is useful for doing [[surface integral]]s.  Under changes of coordinates, the volume element changes by the absolute value of the [[Jacobian determinant]] of the coordinate transformation (by the [[integration by substitution#Substitution for multiple variables|change of variables formula]]).  This fact allows volume elements to be defined as a kind of [[measure (mathematics)|measure]] on a [[manifold]].  On an [[orientability|orientable]] [[differentiable manifold]], a volume element typically arises from a [[volume form]]: a top degree [[differential form]].  On a non-orientable manifold, the volume element is typically the [[absolute value]] of a (locally defined) volume form: it defines a [[density on a manifold|1-density]].
Also visit my blog  [http://journals.fotki.com/preciouscorbett/preciouscorbett/entry/sttfrbsrwbqgg/ norske spilleautomater villig nett] post: [http://www.purevolume.com/abbyaxvdulfl/posts/6929320/Why+Everyone+Is+Dead+Wrong+About+Slotmaskiner+Er+Blant+De+Mest+Popul%C3%A6re+Casinospilleneet+And+Why. norske spilleautomater kungen nett]
 
==Volume element in Euclidean space==
In [[Euclidean space]], the volume element is given by the product of the differentials of the Cartesian coordinates
:<math>dV = dx\,dy\,dz.</math>
In different coordinate systems of the form <math>x=x(u_1,u_2,u_3), y=y(u_1,u_2,u_3), z=z(u_1,u_2,u_3)</math>, the volume element [[integration by substitution|changes by the Jacobian]] of the coordinate change:
:<math>dV = \left|\frac{\partial (x,y,z)}{\partial (u_1,u_2,u_3)}\right|\,du_1\,du_2\,du_3.</math>
For example, in spherical coordinates
:<math>\begin{align}
x&=\rho\cos\theta\sin\phi\\
y&=\rho\sin\theta\sin\phi\\
z&=\rho\cos\phi
\end{align}
</math>
the Jacobian is
:<math>\left |\frac{\partial(x,y,z)}{\partial (\rho,\theta,\phi)}\right| = \rho^2\sin\phi</math>
so that
:<math>dV = \rho^2\sin\phi\,d\rho\,d\theta\,d\phi.</math>
This can be seen as a special case of the fact that differential forms transform through a pullback <math>F^*</math> as
 
:<math> F^*(u \; dy^1 \wedge \cdots \wedge dy^n) = (u \circ F) \det \left(\frac{\partial F^j}{\partial x^i}\right) dx^1 \wedge \cdots \wedge dx^n </math>
 
== Volume element of a linear subspace ==
Consider the [[linear subspace]] of the ''n''-dimensional [[Euclidean space]] '''R'''<sup>''n''</sup> that is spanned by a collection of [[linearly independent]] vectors
:<math>X_1,\dots,X_k.</math>
To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the <math>X_i</math> is the square root of the [[determinant]] of the [[Gramian matrix]] of the <math>X_i</math>:
:<math>\sqrt{\det(X_i\cdot X_j)_{i,j=1\dots k}}.</math>
 
Any point ''p'' in the subspace can be given coordinates <math>(u_1,u_2,\dots,u_k)</math> such that
:<math>p = u_1X_1 + \cdots + u_kX_k.</math>
At a point ''p'', if we form a small parallelepiped with sides <math>du_i</math>, then the volume of that parallelepiped is the square root of the determinant of the Grammian matrix
:<math>\sqrt{\det\left((du_i X_i)\cdot (du_j X_j)\right)_{i,j=1\dots k}} = \sqrt{\det(X_i\cdot X_j)_{i,j=1\dots k}}\; du_1\,du_2\,\cdots\,du_k.</math>
This therefore defines the volume form in the linear subspace.
 
==Volume element of manifolds==
On a [[Riemannian manifold]] of dimension ''n'', the volume element is given in coordinates by
:<math>dV = \sqrt{\det g}\, dx^1\cdots dx^n</math>
where <math>\det g</math> is the [[determinant]] of the [[metric tensor]] ''g'' written in the coordinate system.
 
=== Area element of a surface ===
A simple example of a volume element can be explored by considering a two-dimensional [[surface]] embedded in ''n''-dimensional [[Euclidean space]].  Such a volume element is sometimes called an ''area element''. Consider a subset <math>U \subset \mathbf{R}^2</math> and a mapping function
 
:<math>\varphi:U\to \mathbf{R}^n</math>
 
thus defining a surface embedded in <math>\mathbf{R}^n</math>.  In two dimensions, volume is just area, and a volume element gives a way to determine the area of parts of the surface.  Thus a volume element is an expression of the form
 
:<math>f(u_1,u_2)\,du_1\,du_2</math>
 
that allows one to compute the area of a set ''B'' lying on the surface by computing the integral
 
:<math>\operatorname{Area}(B) = \int_B f(u_1,u_2)\,du_1\,du_2.</math>
 
Here we will find the volume element on the surface that defines area in the usual sense.  The [[Jacobian matrix]] of the mapping is
 
:<math>\lambda_{ij}=\frac{\partial \varphi_i} {\partial u_j}</math>
 
with index ''i'' running from 1 to ''n'', and ''j'' running from 1 to 2. The Euclidean [[metric (mathematics)|metric]] in the ''n''-dimensional space induces a metric <math>g=\lambda^T\lambda</math> on the set ''U'', with matrix elements
 
:<math>g_{ij}=\sum_{k=1}^n \lambda_{ki} \lambda_{kj}
= \sum_{k=1}^n
\frac{\partial \varphi_k} {\partial u_i}
\frac{\partial \varphi_k} {\partial u_j}.
</math>
 
The [[determinant]] of the metric is given by
 
:<math>\det g = \left|
\frac{\partial \varphi} {\partial u_1} \wedge
\frac{\partial \varphi} {\partial u_2}
\right|^2 = \det (\lambda^T \lambda)</math>
 
For a regular surface, this determinant is non-vanishing; equivalently, the Jacobian matrix has rank 2.
 
Now consider a change of coordinates on ''U'', given by a [[diffeomorphism]]
 
:<math>f \colon U\to U , \,\!</math>
 
so that the coordinates <math>(u_1,u_2)</math> are given in terms of <math>(v_1,v_2)</math> by <math>(u_1,u_2)= f(v_1,v_2)</math>.  The Jacobian matrix of this transformation is given by
 
:<math>F_{ij}= \frac{\partial f_i} {\partial v_j}.</math>
 
In the new coordinates, we have
 
:<math>\frac{\partial \varphi_i} {\partial v_j} =
\sum_{k=1}^2
\frac{\partial \varphi_i} {\partial u_k}
\frac{\partial f_k} {\partial v_j}
</math>
 
and so the metric transforms as
 
:<math>\tilde{g} = F^T g F </math>
 
where <math>\tilde{g}</math> is the pullback metric in the ''v'' coordinate system.  The determinant is
 
:<math>\det \tilde{g} = \det g (\det F)^2. </math>
 
Given the above construction, it should now be straightforward to understand how the volume element is invariant under an orientation-preserving change of coordinates.
 
In two dimensions, the volume is just the area. The area of a subset <math>B\subset U</math> is given by the integral
 
:<math>\begin{align}
\mbox{Area}(B)
&= \iint_B \sqrt{\det g}\; du_1\; du_2 \\
&= \iint_B \sqrt{\det g} \;|\det F| \;dv_1 \;dv_2 \\
&= \iint_B \sqrt{\det \tilde{g}} \;dv_1 \;dv_2.
\end{align}</math>
 
Thus, in either coordinate system, the volume element takes the same expression: the expression of the volume element is invariant under a change of coordinates.
 
Note that there was nothing particular to two dimensions in the above presentation; the above trivially generalizes to arbitrary dimensions.
 
===Example: Sphere===
For example, consider the sphere with radius ''r'' centered at the origin in '''R'''<sup>3</sup>.  This can be parametrized using [[spherical coordinates]] with the map
:<math>\phi(u_1,u_2) = (r\cos u_1\sin u_2,r\sin u_1\sin u_2,r\cos u_2).</math>
Then
:<math>g = \begin{pmatrix}r^2\sin^2u_2 & 0 \\ 0 & r^2\end{pmatrix},</math>
and the area element is
:<math> \omega = \sqrt{\det g}\; du_1 du_2 = r^2\sin u_2\, du_1 du_2.</math>
 
==See also==
* [[Cylindrical coordinate system#Line and volume elements]]
* [[Spherical coordinate system#Integration and differentiation in spherical coordinates]]
 
==References==
* {{Citation|last1=Besse|first1=Arthur L.|title=Einstein manifolds|publisher=[[Springer-Verlag]]|location=Berlin, New York|series=Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10|isbn=978-3-540-15279-8|year=1987|pages=xii+510}}
 
[[Category:Measure theory]]
[[Category:Integral calculus]]
[[Category:Multivariable calculus]]

Latest revision as of 23:58, 28 November 2014

The author is known as Phil. Curing individuals is my working spilleautomat på nett day occupation now but I strategy on changing it. One of the extremely free norrman spilleautomater best spilleautomat på nett things in the world for her is to solve puzzles and Det er på spilleautomater med progressive jackpotter now she is trying to make money with it. orgesspill Kansas is where my home orgesspill is. If you want to discover out more beste spilleautomater på nett check out my website: http://www.purevolume.com/abbyaxvdulfl/posts/6929320/Why+Everyone+Is+Dead+Wrong+About+Slotmaskiner+Er+Blant+De+Mest+Popul%C3%A6re+Casinospilleneet+And+Why.

Also visit my blog norske spilleautomater villig nett post: norske spilleautomater kungen nett