Dangling pointer: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Loadmaster
→‎Other uses: New sect. Is there a template for Jargon file terms?
 
 
Line 1: Line 1:
In [[mathematics]], '''Dedekind sums''', named after [[Richard Dedekind]], are certain sums of products of a [[sawtooth function]], and are given by a function ''D'' of three integer variables.  Dedekind introduced them to express the [[functional equation]] of the [[Dedekind eta function]]. They have subsequently been much studied in [[number theory]], and have occurred in some problems of [[topology]]. Dedekind sums obey a large number of relationships on themselves; this article lists only a tiny fraction of these.
47 year-old Marine Biologist Harry Crosser from Drumheller, loves to spend time painting, property developers in singapore and tesla coils. Did a cruise ship experience that was comprised of passing by The Sassi and the Park of the Rupestrian Churches of Matera.<br><br>my web blog; [http://computerlessons.pro/node/71045 computerlessons.pro]
 
== Definition ==
Define the [[sawtooth function]] <math>\left( \left( \right) \right):\mathbb{R} \rightarrow \mathbb{R}</math> as 
:<math>((x))=\begin{cases}
x-\lfloor x\rfloor - 1/2, &\mbox{if }x\in\mathbb{R}\setminus\mathbb{Z};\\
0,&\mbox{if }x\in\mathbb{Z}.
\end{cases}</math>
 
We then let
 
:''D'' :'''Z'''<sup>3</sup> &rarr; '''R'''
 
be defined by
 
:<math>D(a,b;c)=\sum_{n \bmod c} \left( \Bigg( \frac{an}{c} \Bigg) \right)  \left( \left( \frac{bn}{c} \right) \right),</math>
 
the terms on the right being the '''Dedekind sums'''. For the case ''a''=1, one often writes
 
:''s''(''b'',''c'') = ''D''(1,''b'';''c'').
 
==Simple formulae==
Note that ''D'' is symmetric in ''a'' and ''b'', and hence
 
:<math>D(a,b;c)=D(b,a;c),</math>
 
and that, by the oddness of (()),
 
:''D''(&minus;''a'',''b'';''c'') = &minus;''D''(''a'',''b'';''c''),
 
:''D''(''a'',''b'';&minus;''c'') = ''D''(''a'',''b'';''c'').
 
By the periodicity of ''D'' in its first two arguments, the third argument being the length of the period for both,
 
:''D''(''a'',''b'';''c'')=''D''(''a''+''kc'',''b''+''lc'';''c''), for all integers ''k'',''l''.
 
If ''d'' is a positive integer, then
 
:''D''(''ad'',''bd'';''cd'') = ''dD''(''a'',''b'';''c''),
 
:''D''(''ad'',''bd'';''c'') = ''D''(''a'',''b'';''c''), if (''d'',''c'') = 1,
 
:''D''(''ad'',''b'';''cd'') = ''D''(''a'',''b'';''c''), if (''d'',''b'') = 1.
 
There is a proof for the last equality making use of
 
:<math>\sum_{n \bmod c} \left( \left( \frac{n+x}{c} \right) \right)=\left(\left( x\right)\right),\qquad\forall x\in\mathbb{R}.</math>
 
Furthermore, ''az'' = 1 (mod ''c'') implies ''D''(''a'',''b'';''c'') = ''D''(1,''bz'';''c'').
 
==Alternative forms==
 
If ''b'' and ''c'' are coprime, we may write ''s''(''b'',''c'') as
 
:<math>s(b,c)=\frac{-1}{c} \sum_\omega
\frac{1} { (1-\omega^b) (1-\omega ) }
+\frac{1}{4} - \frac{1}{4c},</math>
 
where the sum extends over the ''c''-th roots of unity other than 1, i.e. over all <math>\omega</math> such that <math>\omega^c=1</math> and <math>\omega\not=1</math>.
 
If ''b'', ''c'' &gt; 0 are coprime, then
 
:<math>s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1}
\cot \left( \frac{\pi n}{c} \right)
\cot \left( \frac{\pi nb}{c} \right).
</math>
 
==Reciprocity law==
If ''b'' and ''c'' are coprime positive integers then
 
:<math>s(b,c)+s(c,b) =\frac{1}{12}\left(\frac{b}{c}+\frac{1}{bc}+\frac{c}{b}\right)-\frac{1}{4}.</math>
 
Rewriting this as
 
:<math>12bc \left( s(b,c) + s(c,b) \right) = b^2 + c^2 -3bc + 1,</math>
 
it follows that the number 6''c''&nbsp;''s''(''b'',''c'') is an integer.
 
If ''k'' = (3, ''c'') then
 
:<math> 12bc\, s(c,b)=0 \mod kc</math>
 
and
 
:<math> 12bc\, s(b,c)=b^2+1 \mod kc.</math>
 
A relation that is prominent in the theory of the [[Dedekind eta function]] is the following. Let ''q'' = 3, 5, 7 or 13 and let ''n'' = 24/(''q''&nbsp;&minus;&nbsp;1). Then given integers ''a'', ''b'', ''c'', ''d'' with ''ad''&nbsp;&minus;&nbsp;''bc''&nbsp;=&nbsp;1 (thus belonging to the [[modular group]]), with ''c'' chosen so that ''c''&nbsp;=&nbsp;''kq'' for some integer ''k'' &gt; 0, define
:<math>\delta = s(a,c) - \frac{a+d}{12c} - s(a,k) + \frac{a+d}{12k}</math>
 
Then one has ''n''δ is an even integer.
 
==Rademacher's generalization of the reciprocity law==
[[Hans Rademacher]] found the following generalization of the reciprocity law for Dedekind sums:<ref>{{cite journal | last=Rademacher | first=Hans | authorlink=Hans Rademacher | title=Generalization of the reciprocity formula for Dedekind sums | journal=[[Duke Mathematical Journal]] | volume=21 | pages=391-397 | year=1954 | zbl=0057.03801 }}</ref> If ''a'',''b'', and ''c'' are pairwise coprime positive integers, then
 
:<math>D(a,b;c)+D(b,c;a)+D(c,a;b)=\frac{1}{12}\frac{a^2+b^2+c^2}{abc}-\frac{1}{4}.</math>
 
==References==
<references/>
* [[Tom M. Apostol]], ''Modular functions and Dirichlet Series in Number Theory'' (1990), Springer-Verlag, New York. ISBN 0-387-97127-0 ''(See chapter 3.)''
* Matthias Beck and Sinai Robins, ''[http://math.sfsu.edu/beck/papers/dedekind.slides.pdf Dedekind sums: a discrete geometric viewpoint]'', (2005 or earlier) 
* [[Hans Rademacher]] and [[Emil Grosswald]], ''Dedekind Sums'', Carus Math. Monographs, 1972. ISBN 0-88385-016-8.
 
[[Category:Number theory]]
[[Category:Modular forms]]

Latest revision as of 09:25, 23 July 2014

47 year-old Marine Biologist Harry Crosser from Drumheller, loves to spend time painting, property developers in singapore and tesla coils. Did a cruise ship experience that was comprised of passing by The Sassi and the Park of the Rupestrian Churches of Matera.

my web blog; computerlessons.pro