Effective field theory: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{main|Frame fields in general relativity}}
The author is known as Wilber Pegues. One of the extremely best things in the globe for him is doing ballet and he'll be beginning some thing else alongside with it. Her family lives in Ohio but her husband desires them to transfer. Distributing production is exactly where my primary earnings arrives from and it's some thing I really appreciate.<br><br>Have a look at my web-site ... [http://jje-boutique.com/?q=node/246063 best psychics]
{{main|spin connection}}
{{main|Self-dual Palatini action}}
 
In the [[ADM formulation]] of [[General relativity]] one splits spacetime into spatial slices and time, the basic variables are taken to be the [[induced metric]], <math>q_{ab} (x)</math>, on the spatial slice (the [[Metric (mathematics)|metric]] induced on the spatial slice by the spacetime metric and its conjugate momentum variable is related to the extrinsic curvature, <math>K^{ab} (x)</math>, (this tells us how the spatial slice curves with respect to spacetime and is a measure of how the induced metric evolves in time).<ref>''Gravitation'' by Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, published by W. H. Freeman and company. New York.</ref> These are the metric [[canonical coordinates]]. In 1986 [[Abhay Ashtekar]] introduced a new set of canonical variables, '''Ashtekar (new) variables''' to represent an unusual way of rewriting the metric canonical variables on the three-dimensional spatial slices in terms of a [[SU(2)]] [[gauge field]] and its complementary variable.<ref>Ashtekar, A. (1986) ''Phys. Rev. Lett. 57, 2244''.</ref> Ashtekar variables provide what is called the connection representation of canonical general relativity, which led to the loop representation of quantum general relativity<ref>Rovelli, C. and Smolin, L. ''Phys. Rev. Lett 61, 1155''</ref> and in turn [[loop quantum gravity]].
 
Let us introduce a set of three vector fields <math>E^a_i</math>, <math>i = 1,2,3</math> that are orthogonal, that is,
 
<math>\delta_{ij} = q_{ab} E_i^a E_j^b</math>.
 
The <math>E_i^a</math> are called a drei-bein or triad. There are now two different types of indices, "space" indices <math>a,b,c</math> that behave like regular indices in a curved space, and "internal" indices <math>i,j,k</math> which behave like indices of flat-space (the corresponding "metric" which raises and lowers internal indices is simply <math>\delta_{ij}</math>). Define the dual drei-bein <math>E^i_a</math> as
 
<math>E^i_a = q_{ab} E^b_i</math>.
 
We then have the two orthogonality relationships
 
<math>\delta_{ij} = q^{ab} E^i_a E^j_b</math>
 
where <math>q^{ab}</math> is the inverse matrix of the metric <math>q_{ab}</math> (this comes from substituting the formula for the dual drei-bein in terms of the drei-bein into <math>q^{ab} E^i_a E^j_b</math> and using the orthogonality of the drei-beins).
 
and
 
<math>E_i^a E^i_b = \delta_b^a</math>
 
(this comes about from contracting <math>\delta_{ij} = q_{ab} E_j^b E_i^a</math> with <math>E^i_c</math> and using the linear independence of the <math>E_a^j</math>). It is then easy to verify from the first orthogonality relation (employing <math>E_i^a E^i_b = \delta_b^a</math>) that
 
<math>q^{ab} = \sum_{i=1}^{3} \delta_{ij} E_i^a E_j^b = \sum_{i=1}^{3} E_i^a E_i^b,</math>
 
we have obtained a formula for the inverse metric in terms of the drei-biens - the drei-beins may be thought of as the "square-root" of the metric (the physical meaning to this is that the metric <math>q^{ab}</math>, when written in terms of a basis <math>E_i^a</math>, is locally flat). Actually what is really considered is
 
<math>(\mathrm{det} (q)) q^{ab} = \sum_{i=1}^{3} \tilde{E}_i^a \tilde{E}_i^b,</math>,
 
which involves the densitized drei-bein <math>\tilde{E}_i^a</math> instead (densitized as <math>\tilde{E}_i^a = \sqrt{det (q)} E_i^a</math>). One recovers from <math>\tilde{E}_i^a</math> the metric times a factor given by its determinant. It is clear that <math>\tilde{E}_i^a</math> and <math>E_i^a</math> contain the same information, just rearranged. Now the choice for <math>\tilde{E}_i^a</math> is not unique, and in fact one can perform a local in space [[rotation]] with respect to the internal indices <math>i</math> without changing the (inverse) metric. This is the origin of the <math>SU (2)</math> gauge invariance. Now if one is going to operate on objects that have internal indices one needs to introduce an appropriate derivative ([[covariant derivative]]), for example the covariant derivative for the object <math>V_i^b</math> will be
 
<math>D_a V_i^b = \partial_a V_i^b - \Gamma_{a \;\; i}^{\;\; j} V_j^b + \Gamma^b_{ac} V_i^c</math>
 
where <math>\Gamma^b_{ac}</math> is the usual [[Levi-Civita connection]] and <math>\Gamma_{a \;\; i}^{\;\; j}</math> is the so-called [[spin connection]]. Let us take the configuration variable to be
 
<math>A_a^i = \Gamma_a^i + \beta K_a^i</math>
 
where <math>\Gamma_a^i = \Gamma_{ajk} \epsilon^{jki}</math> and <math>K_a^i = K_{ab} \tilde{E}^{ai} / \sqrt{det (q)}</math>. The densitized drei-bein is the conjugate momentum variable of this three-dimensional SU(2) gauge field (or connection) <math>A^j_b</math>, in that it satisfies the Poisson bracket relation
 
<math>\{ \tilde{E}_i^a (x) , A^j_b (y) \} = 8\pi G_{\mathrm{Newton}} \beta \delta^a_b \delta^j_i \delta^3 (x - y)</math>.
 
The constant <math>\beta</math> is the Barbero-[[Immirzi parameter]], a factor that renormalizes [[Newton's constant]] <math>G_{\mathrm{Newton}}</math>. The densitized drei-bein can be used to re construct the metric as discussed above and the connection can be used to reconstruct the extrinsic curvature. Ashtekar variables correspond to the choice <math>\beta = -i</math> (the negative of the [[imaginary number]]), <math>A_a^i</math> is then called the chiral spin connection. The reason for this choice of spin connection was that he could much simplify the most troublesome equation of canonical general relativity, namely the [[Hamiltonian constraint]]; this choice made its second, formidable, term vanish and the remaining term became polynomial in his new variables. This raised new hopes for the canonical quantum gravity programme.<ref>See the book ''Lectures on Non-Perturbative Canonical Gravity'' for more details on this and the subsequent development. First published in 1991. World Scientific Publishing Co. Pte. LtD.</ref> However it did present certain difficulties. Although Ashtekar variables had the virtue of simplifying the Hamiltonian, it has the problem that the variables become complex.<ref>See part III chapter 5 of ''Gauge Fields, Knots and Gravity'', John Baez, Javier P. Muniain. First published 1994. World scientific Publishing Co. Pte. LtD.</ref> When one quantizes the theory it is a difficult task ensure that one recovers real general relativity as opposed to complex general relativity. Also the Hamiltonian constraint Ashtekar worked with was the densitized version instead of the original Hamiltonian, that is, he worked with <math>\tilde{H} = \sqrt{det (q)} H</math>. There were serious difficulties in promoting this quantity to a quantum operator. It was [[Thomas Thiemann]] who was able to use the generalization of Ashtekar's formalism to real connections (<math>\beta</math> takes real values) and in particular devised a way of simplifying the original Hamiltonian, together with the second term, in 1996. He was also able to promote this Hamiltonian constraint to a well defined quantum operator within the loop representation.<ref>''Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity'', T. Thiemann'', Phys.Lett. B380 (1996) 257-264.</ref> For an account of these developments see [[John Baez]]'s homepage entry, ''The Hamiltonian Constraint in the Loop Representation of Quantum Gravity''.<ref>''The Hamiltonian Constraint in the Loop Representation of Quantum Gravity'', http://math.ucr.edu/home/baez/hamiltonian/hamiltonian.html</ref>
 
Smolin and others independently discovered that there exists in fact a Lagrangian formulation of the theory by considering the self-dual formulation of the [[tetradic Palatini action]] principle of general relativity.<ref>J. Samuel. ''A Lagrangian basis for Ashtekar's formulation of canonical gravity''. Pramana J. Phys. 28 (1987) L429-32</ref><ref>T. Jacobson and L. Smolin. ''The left-handed spin connection as a variable for canonical gravity.'' Phys. Lett. B196 (1987) 39-42.</ref><ref>T. Jacobson and L. Smolin. ''Coariant action for Ashtekar's form of canonical gravity''. Class. Quant. Grav. 5 (1987) 583.</ref> These proofs were given in terms of spinors. A purely tensorial proof of the new variables in terms of triads was given by Goldberg<ref>''Triad approach to the Hamiltonian of general relativity.'' Phys. Rev. D37 (1987) 2116-20.</ref> and in terms of tetrads by Henneaux et al.<ref>M. Henneaux, J.E. Nelson and C. Schomblond. ''Derivation of Ashtekar variables from tetrad gravity.'' Phys. Rev. D39 (1989) 434-7.</ref>
 
==Further reading==
*{{cite journal |last=Ashtekar |first=Abhay |authorlink= |coauthors= |year=1986 |month= |title=New Variables for Classical and Quantum Gravity |journal=Physical Review Letters |volume=57 |issue=18 |pages=2244&ndash;2247 |doi=10.1103/PhysRevLett.57.2244 |url= |accessdate= |quote= |pmid=10033673 |bibcode=1986PhRvL..57.2244A}}
 
==References==
{{Reflist}}
 
[[Category:Loop quantum gravity]]

Latest revision as of 22:44, 16 October 2014

The author is known as Wilber Pegues. One of the extremely best things in the globe for him is doing ballet and he'll be beginning some thing else alongside with it. Her family lives in Ohio but her husband desires them to transfer. Distributing production is exactly where my primary earnings arrives from and it's some thing I really appreciate.

Have a look at my web-site ... best psychics