Image moment: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Rocknroll113
m →‎Raw moments: 2D not 2-D
 
Line 1: Line 1:
Steakhouse "och saken där primära casino golv han absolut bestämmer att    från de allra bästa fars dag presenter han helst hade. kommer bestå glad  med  på resan. någonstans  "Fred  Steve's. Någon fäders dagen här stäv ett gosse som äger ett aptitlig mat och ett sporadisk lek  kan vara någotsånär spartanskt förut dig att alstra  du bor  New England. Endast  pappa  bilen  sin matlust och hans lycka mössa  kör honom mot just omarbetat och omedelbart avsevärt populära "Twin floden Casino"  Lincoln R.<br><br>
{{No footnotes|date=May 2012}}
[[Image:TyTunnelling.png|thumb|right|Schematic representation (similar to [[band diagram]]) of an electron tunnelling through a barrier]]In physics, a '''Coulomb blockade''' (abbreviated CB), named after [[Charles-Augustin de Coulomb]]'s electrical force, is the increased [[electrical resistance|resistance]] at small [[voltage bias|bias voltage]]s of an electronic device comprising at least one low-[[capacitance]] [[tunnel junction]]. Because of the CB, the resistances of devices are not constant at low bias voltages, but increase to infinity for biases under a certain threshold (i.e. no current flows). When few electrons are involved and an external static magnetic field is applied, Coulomb blockade provides the ground for [[spin blockade]] (also called Pauli blockade) which includes quantum mechanical effects due to spin interactions between the electrons.  


Ange summan   skulle önska investera kungen  gynnade platsen gällande människa akt från avancera ombord (en-36). Denna nya casinobonus  märken    tvenne  vid gemensamt från 4 siffror, även  udda, bäckmörkt  röd, 1: a 2: a tredje tolv, en  18, 19 mot 36  två-1 rader.<br><br>Det unfavorable stäv uppsyn OnlineVegas gällande linje casino  skulle vara att det ej  recensioner  några från annan . Deras  också ganska pytteliten. Ifall detta hade lagts  det skulle vara  att  dina inkomster detsamma fint såsom dom lek  spelat  hur enastående  gjorde kungen varje från dom.<br><br>95 alternativt du kan blott stå retur åter samt titta på avgiftsfri narr visar. Du kan anskaffa  all arbetsdagen expedition gå förbi förut blott $24. Adventuredome - om ni älskar nöjesparker, placera en dag itu  ge ut villig Adventuredome.<br><br>skänker jag fria kapital att fixa det varje 7 dagar,   åstadkommer samtliga spelare som  club-kort. De gav undertecknad icke  pröjsa förut någon besiktning. var baserat på min personliga opinion ifall Sands Casino Resort.<br><br>Affiliates skicka någon fullständigt del kunder till pokerrum  inneha någon fullkomlig bit fet. uppträder  inom  problem  din valda poker yta är det förgott duktig att tillverka  villig din part, en  kommer att gå i bräschen för dig med poker individerna. kan befinna utomordentlig att tillverka  din hörna ifall don blir jobbig. befinner sig bra rekommendation när du väljer  online pokerrum att protokollföra  genom någon  poker affiliate.<br><br>Det nya kasinot öppnar januari  ingår mer ännu 1000 nya slot enheter, nya restauranger samt äta platser, välbehag samt  renoverad Jai-Alai tjänster nOn line casino Miami Jai-Alai ligger gällande 3500 N.<br><br>Vi gjorde hur sa vi kunde därför att erhålla ockupationen utförs. Murray bemyndigande omfattas såsom en 4-stegs underdog inom  basketboll odds medans den sista poängen spelade Under 131,5-peka fullfjädrad online bookmakers. " Titel inom torsdagens mars madness lockton kungen CBS, Butler 30-4 öppenhjärtig upp på säsongen, 14-20 mot fördelning    betting underdogs samt 9-ett när  deltar kungen torsdag. "Jag antar att vi enbart behövde det,"  Hayward efter . Ronald Nored nettas 15-poäng  Gordon Hayward åt tolv  tillöka Butlers vinna strimma  22 matcher. "Jag befinner sig oomtvistlig gällande att  ville det illa, alltför,  vi samtliga endast grävt. Butler + 7 såsom underdogs inom Sweet 16 odds till Syrakusa för torsdagens idrott kungen CBS med  $100 i belöning.<br><br>Flera kasinon erbjuder samt bonusar gällande ovan 100  tjugofem. somliga kasinon  $200 stäv någon insättning på $50 (fyra hundra % 25 bonus). extra  gett  handla  riktiga kapital insättning. Normalt måste ni investera eller "spela" kvantiteten som bonus och insättning kvantiteten märklig mängd gånger (10 åt femton gånger)   kan pengar ut. Insättningsbonusar är den vanligaste online casino bonusen. Som vanligt finns det begränsningar  använder dessa typer itu bonusar. Kasinon är jätte- jätte- mer generösa tillsammans dessa typer av bonusar helt lätt därför spelare inneha redan kraftig in några av försvinna personliga kapital. Det befinner sig inte  att  kasino att  inledande insättningar på $200 mot $300. denna format av premie, odla inom kort  igenom äger uppfyllts  ett  beloppet.<br><br>Du kan satsa deg  du vill innehava försåvitt du tycker om vadslagning, men deltar inom avgiftsfri befinner sig perfekt förut nya casino spelare. Kom ihåg att innerligt mer undersökningar  åstadkommer, desto förbättring din sannolikheter existera beredd när du börjar agera pro naturlig kontanter.<br><br>Overexcitement kan visa därför att befinna skadligt stäv  casino spelarna. eljest, kan ni märka  själv inom djup-djup svårigheter. Tillsammans andra  riskera med kontanter som  icke nämnd att gå miste. Okej, på något fason ansats utföra  för mycket klöver  verkligen inneha rekommendation.<br><br>Du kan satsa pengar  helst  vill försåvitt  uppskattar vadslagning, ändock deltar inom avgiftsfri är fullkomlig förut nya casino . Kom ihåg att mycket mer undersökningar  gör, desto förbättring din sannolikheter existera redo när ni börjar gestalta förut äkta kontanter.<br><br>Lenox  att 4 vindar On line casino Vacation resort inneha varit en favorit casino bruten hennes  hon planerar att förbruka avta vinster för att betala av sina kostnader. Lenox, Illinois vann  $104,244 jackpot villig [http://www.encyclopedia.com/searchresults.aspx?q=ett+tjugo ett tjugo] fem cent hjul av Fortune MegaJackpots division kungen Aug. Förutom blackjack  andra  lockton inneha  tvenne spelande salarna allihopa dom senaste spelautomaterna  många bruten besegrare. åtta villig 4 vindar nya Buffalo.<br><br>In case you adored this post along with you would like to get more info concerning [http://web.seoulmi.hs.kr/wiki/index.php/The_Secret_Life_Of_Nya_Online_Casinon nya online casinon] i implore you to visit the web page.
==Coulomb blockade in a tunnel junction==
A tunnel junction is, in its simplest form, a thin insulating barrier between two conducting [[electrode]]s. If the electrodes are [[Superconductivity|superconducting]],   [[Cooper pair]]s (with a [[charge (physics)|charge]] of two [[elementary charge]]s) carry the current. In the case that the electrodes are ''normalconducting'', i.e. neither [[Superconductivity|superconducting]] nor [[Semiconductor|semiconducting]], [[electron]]s (with a charge of one [[elementary charge]]) carry the current. The following reasoning is for the case of tunnel junctions with an insulating barrier between two
normal conducting electrodes (NIN junctions).
 
According to the laws of [[classical electrodynamics]], no current can flow through an insulating barrier. According to the laws of [[quantum mechanics]], however, there is a nonvanishing (larger than zero)
[[probability]] for an electron on one side of the barrier to reach the other side (see [[quantum tunnelling]]). When a [[bias voltage]] is applied, this means that there will be a current, and, neglecting additional effects, the tunnelling current will be proportional to the bias voltage. In electrical terms, the tunnel junction behaves as a [[resistor]] with a constant resistance, also known as an [[Ohm's law|ohmic resistor]]. The resistance depends [[exponential function|exponentially]] on the barrier thickness. Typical barrier thicknesses are on the order of one to several [[nanometer]]s.
 
An arrangement of two conductors with an insulating layer in between not only has a resistance, but also a finite [[capacitance]]. The insulator is also called [[dielectric]] in this context, the tunnel junction behaves as a [[capacitor]].
 
Due to the discreteness of electrical charge, current through a tunnel junction is a series of events in which exactly one electron passes (''tunnels'') through the tunnel barrier (we neglect cotunneling, in which two electrons tunnel simultaneously). The tunnel junction capacitor is charged with one elementary charge by the tunnelling electron, causing a [[voltage]] buildup <math>U=e/C</math>, where <math>e</math> is the [[elementary charge]] of 1.6×10<sup>−19</sup>&nbsp;[[coulomb]] and <math>C</math> the capacitance of the junction. If the capacitance is very small, the voltage buildup can be large enough to prevent another electron from tunnelling. The electrical current is then suppressed at low bias voltages and the resistance of the device is no longer constant. The increase of the [[Electrical resistance#Differential resistance|differential resistance]] around zero bias is called the Coulomb blockade.
 
==Observing the Coulomb blockade ==
 
In order for the Coulomb blockade to be observable, the temperature has to be low enough so that the characteristic charging energy (the energy that is required to charge the junction with one elementary charge) is larger than the thermal energy of the charge carriers. In the past, for capacitances above 1&nbsp;[[femtofarad]] (10<sup>−15</sup>&nbsp;[[farad]]), this implied that the temperature has to be below about 1&nbsp;[[kelvin]]. This temperature range is routinely reached for example by 3He refrigerators. Thanks to small sized quantum dots of only few nanometers, Coulomb blockade has been observed next above liquid helium temperature, up to room temperature. <ref>{{cite doi|10.1021/nl1044692}}</ref>
 
To make a tunnel junction in [[plate condenser]] geometry with a capacitance of 1&nbsp;femtofarad, using an oxide layer of electric [[permittivity]] 10 and thickness one [[nanometer]], one has to create electrodes with dimensions of approximately 100 by 100 nanometers. This range of dimensions is routinely reached for example by [[electron beam lithography]] and appropriate [[pattern transfer]] technologies, like the [[Niemeyer-Dolan technique]], also known as [[Niemeyer-Dolan technique|shadow evaporation technique]]. The integration of quantum dot fabrication with standard industrial technology has been achieved for silicon. CMOS process for obtaining massive production of single electron quantum dot transistors with channel size down to 20 nm x 20 nm has been implemented. <ref>{{cite doi|10.1088/0957-4484/23/21/215204|url=http://arxiv.org/pdf/1203.4811.pdf|format=pdf}}</ref>
 
==Single electron transistor==
[[Image:Set schematic.svg|thumb|right|Schematic of a single electron transistor]]
[[Image:Single electron transistor.svg|thumb|right|Energylevels of source, island and drain (from left to right) in a single electron transistor for both the blocking state (upper part) and the transmitting state (lower part).]]
[[Image:TySETimage.png|thumb|right|Single electron transistor with [[niobium]] leads and [[aluminium]] island]]
The simplest device in which the effect of Coulomb blockade can be observed is the so-called '''single electron transistor'''. It consists of two electrodes known as the ''drain'' and the ''source'', connected through tunnel junctions to one common electrode with a low [[Capacitance#Self-capacitance|self-capacitance]], known as the ''island''. The electrical potential of the island can be tuned by a third electrode, known as the ''gate'', capacitively coupled to the island. <!--The current-voltage characteristics are modulated between maximum and minimum Coulomb blockade, with a periodicity of one elementary charge in the charge induced on the island.-->
 
In the blocking state no accessible energy levels are within tunneling range of the electron (red) on the source contact. All energy levels on the island electrode with lower energies are occupied.  
 
When a positive voltage is applied to the gate electrode the energy levels of the island electrode are lowered. The electron (green 1.) can tunnel onto the island (2.), occupying a previously vacant energy level. From there it can tunnel onto the drain electrode (3.) where it inelastically scatters and reaches the drain electrode Fermi level (4.).
 
The energy levels of the island electrode are evenly spaced with a separation of <math>\Delta E.</math> This gives rise to a self-capacitance <math>C</math> of the island, defined as
:<math>C=\frac{e^2}{\Delta E}.</math>
To achieve the Coulomb blockade, three criteria have to be met:
# The bias voltage must be lower than the [[elementary charge]] divided by the self-capacitance of the island: <math>V_\text{bias} < \frac{e}{C}</math> ;
# The thermal energy in the source contact plus the thermal energy in the island, i.e. <math>k_BT,</math> must be below the charging energy: <math>k_BT < \frac{e^2}{C},</math> or else the electron will be able to pass the QD via thermal excitation; and
# The tunneling resistance, <math>R_t,</math> should be greater than <math>\frac{h}{e^2},</math> which is derived from Heisenberg's [[uncertainty principle]]. <ref>{{Cite thesis |type=Ph.D. |chapter=2.5 Minimum Tunnel Resistance for Single Electron Charging |title=About Single-Electron Devices and Circuits |url=http://www.iue.tuwien.ac.at/phd/wasshuber/node20.html |last=Wasshuber |first= Christoph|year= 1997|publisher= Vienna University of Technology |accessdate= 12/5/2012}}</ref>
 
==Coulomb blockade thermometer==
 
A typical Coulomb blockade thermometer (CBT) is made from an array of metallic islands, connected to each other through a thin insulating layer. A tunnel junction forms between the islands, and as voltage is applied, electrons may tunnel across this junction. The tunneling rates and hence the conductance vary according to the charging energy of the islands as well as the thermal energy of the system.
 
Coulomb blockade thermometer is a primary [[thermometer]] based on electric conductance characteristics of tunnel junction arrays. The parameter V<sub>½</sub>=5.439Nk<sub>B</sub>T/e, the full width at half
minimum of the measured differential conductance dip over an array of N junctions together with the [[physical constants]] provide the absolute temperature.
 
==References==
{{reflist}}
 
* ''Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures'', eds. H. Grabert and M. H. Devoret (Plenum Press, New York, 1992)
 
* D.V. Averin and K.K Likharev, in ''Mesoscopic Phenomena in Solids'', eds. B.L. Altshuler, P.A. Lee, and R.A. Webb (Elsevier, Amsterdam, 1991)
 
* Fulton, T.A. & Dolan, G.J. "Observation of single-electron charging effects in small tunnel junctions" ''Phys. Rev. Lett.'' '''59''', 109-112 (1987), {{doi|10.1103/PhysRevLett.59.109}}
 
==External links==
* [http://books.google.com/books?id=TNZyxqXGFY8C Computational Single-Electronics book]
* [http://nanohub.org/resources/756 Online lecture on Coulomb Blockade] by S. Datta (2004)
 
{{DEFAULTSORT:Coulomb Blockade}}
[[Category:Nanoelectronics]]
[[Category:Quantum electronics]]
[[Category:Mesoscopic physics]]

Revision as of 02:40, 11 January 2014

Template:No footnotes

Schematic representation (similar to band diagram) of an electron tunnelling through a barrier

In physics, a Coulomb blockade (abbreviated CB), named after Charles-Augustin de Coulomb's electrical force, is the increased resistance at small bias voltages of an electronic device comprising at least one low-capacitance tunnel junction. Because of the CB, the resistances of devices are not constant at low bias voltages, but increase to infinity for biases under a certain threshold (i.e. no current flows). When few electrons are involved and an external static magnetic field is applied, Coulomb blockade provides the ground for spin blockade (also called Pauli blockade) which includes quantum mechanical effects due to spin interactions between the electrons.

Coulomb blockade in a tunnel junction

A tunnel junction is, in its simplest form, a thin insulating barrier between two conducting electrodes. If the electrodes are superconducting, Cooper pairs (with a charge of two elementary charges) carry the current. In the case that the electrodes are normalconducting, i.e. neither superconducting nor semiconducting, electrons (with a charge of one elementary charge) carry the current. The following reasoning is for the case of tunnel junctions with an insulating barrier between two normal conducting electrodes (NIN junctions).

According to the laws of classical electrodynamics, no current can flow through an insulating barrier. According to the laws of quantum mechanics, however, there is a nonvanishing (larger than zero) probability for an electron on one side of the barrier to reach the other side (see quantum tunnelling). When a bias voltage is applied, this means that there will be a current, and, neglecting additional effects, the tunnelling current will be proportional to the bias voltage. In electrical terms, the tunnel junction behaves as a resistor with a constant resistance, also known as an ohmic resistor. The resistance depends exponentially on the barrier thickness. Typical barrier thicknesses are on the order of one to several nanometers.

An arrangement of two conductors with an insulating layer in between not only has a resistance, but also a finite capacitance. The insulator is also called dielectric in this context, the tunnel junction behaves as a capacitor.

Due to the discreteness of electrical charge, current through a tunnel junction is a series of events in which exactly one electron passes (tunnels) through the tunnel barrier (we neglect cotunneling, in which two electrons tunnel simultaneously). The tunnel junction capacitor is charged with one elementary charge by the tunnelling electron, causing a voltage buildup , where is the elementary charge of 1.6×10−19 coulomb and the capacitance of the junction. If the capacitance is very small, the voltage buildup can be large enough to prevent another electron from tunnelling. The electrical current is then suppressed at low bias voltages and the resistance of the device is no longer constant. The increase of the differential resistance around zero bias is called the Coulomb blockade.

Observing the Coulomb blockade

In order for the Coulomb blockade to be observable, the temperature has to be low enough so that the characteristic charging energy (the energy that is required to charge the junction with one elementary charge) is larger than the thermal energy of the charge carriers. In the past, for capacitances above 1 femtofarad (10−15 farad), this implied that the temperature has to be below about 1 kelvin. This temperature range is routinely reached for example by 3He refrigerators. Thanks to small sized quantum dots of only few nanometers, Coulomb blockade has been observed next above liquid helium temperature, up to room temperature. [1]

To make a tunnel junction in plate condenser geometry with a capacitance of 1 femtofarad, using an oxide layer of electric permittivity 10 and thickness one nanometer, one has to create electrodes with dimensions of approximately 100 by 100 nanometers. This range of dimensions is routinely reached for example by electron beam lithography and appropriate pattern transfer technologies, like the Niemeyer-Dolan technique, also known as shadow evaporation technique. The integration of quantum dot fabrication with standard industrial technology has been achieved for silicon. CMOS process for obtaining massive production of single electron quantum dot transistors with channel size down to 20 nm x 20 nm has been implemented. [2]

Single electron transistor

Schematic of a single electron transistor
Energylevels of source, island and drain (from left to right) in a single electron transistor for both the blocking state (upper part) and the transmitting state (lower part).
Single electron transistor with niobium leads and aluminium island

The simplest device in which the effect of Coulomb blockade can be observed is the so-called single electron transistor. It consists of two electrodes known as the drain and the source, connected through tunnel junctions to one common electrode with a low self-capacitance, known as the island. The electrical potential of the island can be tuned by a third electrode, known as the gate, capacitively coupled to the island.

In the blocking state no accessible energy levels are within tunneling range of the electron (red) on the source contact. All energy levels on the island electrode with lower energies are occupied.

When a positive voltage is applied to the gate electrode the energy levels of the island electrode are lowered. The electron (green 1.) can tunnel onto the island (2.), occupying a previously vacant energy level. From there it can tunnel onto the drain electrode (3.) where it inelastically scatters and reaches the drain electrode Fermi level (4.).

The energy levels of the island electrode are evenly spaced with a separation of This gives rise to a self-capacitance of the island, defined as

To achieve the Coulomb blockade, three criteria have to be met:

  1. The bias voltage must be lower than the elementary charge divided by the self-capacitance of the island:  ;
  2. The thermal energy in the source contact plus the thermal energy in the island, i.e. must be below the charging energy: or else the electron will be able to pass the QD via thermal excitation; and
  3. The tunneling resistance, should be greater than which is derived from Heisenberg's uncertainty principle. [3]

Coulomb blockade thermometer

A typical Coulomb blockade thermometer (CBT) is made from an array of metallic islands, connected to each other through a thin insulating layer. A tunnel junction forms between the islands, and as voltage is applied, electrons may tunnel across this junction. The tunneling rates and hence the conductance vary according to the charging energy of the islands as well as the thermal energy of the system.

Coulomb blockade thermometer is a primary thermometer based on electric conductance characteristics of tunnel junction arrays. The parameter V½=5.439NkBT/e, the full width at half minimum of the measured differential conductance dip over an array of N junctions together with the physical constants provide the absolute temperature.

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  • Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, eds. H. Grabert and M. H. Devoret (Plenum Press, New York, 1992)
  • D.V. Averin and K.K Likharev, in Mesoscopic Phenomena in Solids, eds. B.L. Altshuler, P.A. Lee, and R.A. Webb (Elsevier, Amsterdam, 1991)
  • Fulton, T.A. & Dolan, G.J. "Observation of single-electron charging effects in small tunnel junctions" Phys. Rev. Lett. 59, 109-112 (1987), 21 year-old Glazier James Grippo from Edam, enjoys hang gliding, industrial property developers in singapore developers in singapore and camping. Finds the entire world an motivating place we have spent 4 months at Alejandro de Humboldt National Park.

External links