Metrization theorem

From formulasearchengine
Revision as of 22:21, 18 November 2013 by 201.19.53.102 (talk) (→‎Examples)
Jump to navigation Jump to search

Template:Hide in print

Template:Distinguish

In physics, particularly statistical mechanics, the Maxwell–Boltzmann distribution or Maxwell speed distribution describes particle speeds in idealized gases where the particles move freely inside a stationary container without interacting with one another, except for very brief collisions in which they exchange energy and momentum with each other or with their thermal environment. Particle in this context refers to either gaseous atoms or molecules, and the system of particles is assumed to have reached thermodynamic equilibrium.[1]

The distribution is a probability distribution for the speed of a particle within the gas - the magnitude of its velocity. This probability distribution indicates which speeds are more likely: a particle will have a speed selected randomly from the distribution, and is more likely to be within one range of speeds than another. The distribution depends on the temperature of the system and the mass of the particle.[2]

The Maxwell–Boltzmann distribution applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions, relativistic speed limits, and quantum exchange interactions) that make their speed distribution sometimes very different from the Maxwell–Boltzmann form. That said, rarefied gases at ordinary temperatures behave very nearly like an ideal gas and the Maxwell speed distribution is an excellent approximation for such gases. Thus, it forms the basis of the kinetic theory of gases, which provides a simplified explanation of many fundamental gaseous properties, including pressure and diffusion.[3]

The distribution is named after James Clerk Maxwell and Ludwig Boltzmann. While the distribution was first derived by Maxwell in 1860 on basic grounds,[4] Boltzmann later carried out significant investigations into the physical origins of this distribution.

Distribution function

The speed probability density functions of the speeds of a few noble gases at a temperature of 298.15 K (25 °C). The y-axis is in s/m so that the area under any section of the curve (which represents the probability of the speed being in that range) is dimensionless.

The Maxwell–Boltzmann distribution is the function

where is the particle mass and is the product of Boltzmann's constant and thermodynamic temperature.

This probability density function gives the probability, per unit speed, of finding the particle with a speed near . This equation is simply the Maxwell distribution (given in the infobox) with distribution parameter . In probability theory the Maxwell–Boltzmann distribution is a chi distribution with three degrees of freedom and scale parameter .

Typical speeds

The mean speed, most probable speed (mode), and root-mean-square can be obtained from properties of the Maxwell distribution.

The typical speeds are related as follows:

Derivation and related distributions

The original derivation by Maxwell assumed all three directions would behave in the same fashion, but a later derivation by Boltzmann dropped this assumption using kinetic theory. The Maxwell–Boltzmann distribution (for energies) can now most readily be derived from the Boltzmann distribution for energies (see also the Maxwell–Boltzmann statistics of statistical mechanics):[1][5]

Template:NumBlk

where:

  • i is the microstate (indicating one configuration particle quantum states - see partition function).
  • Ei is the energy level of microstate i.
  • T is the equilibrium temperature of the system.
  • gi is the degeneracy factor, or number of degenerate microstates which have the same energy level
  • k is the Boltzmann constant.
  • Ni is the number of molecules at equilibrium temperature T, in a state i which has energy Ei and degeneracy gi.
  • N is the total number of molecules in the system.

Note that sometimes the above equation is written without the degeneracy factor gi. In this case the index i will specify an individual state, rather than a set of gi states having the same energy Ei. Because velocity and speed are related to energy, Equation (Template:EquationNote) can be used to derive relationships between temperature and the speeds of molecules in a gas. The denominator in this equation is known as the canonical partition function.

Distribution for the momentum vector

The following is a derivation wildly different from the derivation described by James Clerk Maxwell and later described with fewer assumptions by Ludwig Boltzmann. Instead it is close to Boltzmann's later approach of 1877.

For the case of an "ideal gas" consisting of non-interacting atoms in the ground state, all energy is in the form of kinetic energy, and gi is constant for all i. The relationship between kinetic energy and momentum for massive particles is

Template:NumBlk

where p2 is the square of the momentum vector p = [pxpypz]. We may therefore rewrite Equation (Template:EquationNote) as:

Template:NumBlk

where Z is the partition function, corresponding to the denominator in Equation (Template:EquationNote). Here m is the molecular mass of the gas, T is the thermodynamic temperature and k is the Boltzmann constant. This distribution of Ni/N is proportional to the probability density function fp for finding a molecule with these values of momentum components, so:

Template:NumBlk

The normalizing constant c, can be determined by recognizing that the probability of a molecule having some momentum must be 1. Therefore the integral of equation (Template:EquationNote) over all px, py, and pz must be 1.

It can be shown that: Template:NumBlk

Substituting Equation (Template:EquationNote) into Equation (Template:EquationNote) gives:

Template:NumBlk

The distribution is seen to be the product of three independent normally distributed variables , , and , with variance . Additionally, it can be seen that the magnitude of momentum will be distributed as a Maxwell–Boltzmann distribution, with . The Maxwell–Boltzmann distribution for the momentum (or equally for the velocities) can be obtained more fundamentally using the H-theorem at equilibrium within the kinetic theory framework.

Distribution for the energy

Using p² = 2mE, and the distribution function for the magnitude of the momentum (see below), we get the energy distribution:

Template:NumBlk

Since the energy is proportional to the sum of the squares of the three normally distributed momentum components, this distribution is a gamma distribution; in particular, it is a chi-squared distribution with three degrees of freedom.

By the equipartition theorem, this energy is evenly distributed among all three degrees of freedom, so that the energy per degree of freedom is distributed as a chi-squared distribution with one degree of freedom:[6]

where is the energy per degree of freedom. At equilibrium, this distribution will hold true for any number of degrees of freedom. For example, if the particles are rigid mass dipoles, they will have three translational degrees of freedom and two additional rotational degrees of freedom. The energy in each degree of freedom will be described according to the above chi-squared distribution with one degree of freedom, and the total energy will be distributed according to a chi-squared distribution with five degrees of freedom. This has implications in the theory of the specific heat of a gas.

The Maxwell–Boltzmann distribution can also be obtained by considering the gas to be a type of quantum gas.

Distribution for the velocity vector

Recognizing that the velocity probability density fv is proportional to the momentum probability density function by

and using p = mv we get

which is the Maxwell–Boltzmann velocity distribution. The probability of finding a particle with velocity in the infinitesimal element [dvxdvydvz] about velocity v = [vxvyvz] is

Like the momentum, this distribution is seen to be the product of three independent normally distributed variables , , and , but with variance . It can also be seen that the Maxwell–Boltzmann velocity distribution for the vector velocity [vxvyvz] is the product of the distributions for each of the three directions:

where the distribution for a single direction is

Each component of the velocity vector has a normal distribution with mean and standard deviation , so the vector has a 3-dimensional normal distribution, also called a "multinormal" distribution, with mean and standard deviation .

The Maxwell–Boltzmann distribution for the speed follows immediately from the distribution of the velocity vector, above. Note that the speed is

and the increment of volume is

where and are the "course" (azimuth of the velocity vector) and "path angle" (elevation angle of the velocity vector). Integration of the normal probability density function of the velocity, above, over the course (from 0 to ) and path angle (from 0 to ), with substitution of the speed for the sum of the squares of the vector components, yields the speed distribution.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Further reading

  • Physics for Scientists and Engineers - with Modern Physics (6th Edition), P. A. Tipler, G. Mosca, Freeman, 2008, ISBN 0-7167-8964-7
  • Thermodynamics, From Concepts to Applications (2nd Edition), A. Shavit, C. Gutfinger, CRC Press (Taylor and Francis Group, USA), 2009, ISBN (13-) 978-1-4200-7368-3
  • Chemical Thermodynamics, D.J.G. Ives, University Chemistry, Macdonald Technical and Scientific, 1971, ISBN 0-356-03736-3
  • Elements of Statistical Thermodynamics (2nd Edition), L.K. Nash, Principles of Chemistry, Addison-Wesley, 1974, ISBN 0-201-05229-6
  • Ward, CA & Fang, G 1999, 'Expression for predicting liquid evaporation flux: Statistical rate theory approach', Physical Review E, vol. 59, no. 1, pp. 429-40.
  • Rahimi, P & Ward, CA 2005, 'Kinetics of Evaporation: Statistical Rate Theory Approach', Int. J. of Thermodynamics, vol. 8, no. 9, pp. 1-14.

External links

55 yrs old Metal Polisher Records from Gypsumville, has interests which include owning an antique car, summoners war hack and spelunkering. Gets immense motivation from life by going to places such as Villa Adriana (Tivoli).

my web site - summoners war hack no survey ios

  1. 1.0 1.1 Statistical Physics (2nd Edition), F. Mandl, Manchester Physics, John Wiley & Sons, 2008, ISBN 9780471915331
  2. University Physics – With Modern Physics (12th Edition), H.D. Young, R.A. Freedman (Original edition), Addison-Wesley (Pearson International), 1st Edition: 1949, 12th Edition: 2008, ISBN (10-) 0-321-50130-6, ISBN (13-) 978-0-321-50130-1
  3. Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3
  4. Maxwell, J.C. (1860) Illustrations of the dynamical theory of gases. Philosophical Magazine 19, 19-32 and Philosophical Magazine 20, 21-37.
  5. McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
  6. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534, Appendix N, page 434