Pattern recognition: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Bgwhite
m WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWB (9866)
Line 1: Line 1:
{{About|the mathematical concept|the musical term|Tuplet}}
Hello! <br>My name is King and I'm a 24 years old girl from Austria.<br><br>my web blog :: [https://www.youtube.com/watch?v=uboG8ZUzlqI music making software download free]
{{Redir|Octuple|the type of rowing boat|Octuple scull}}
{{Redir|Duodecuple|the term in music|Twelve-tone technique}}
 
In [[mathematics]], [[computer science]], [[linguistics]],<ref>http://www.oxfordreference.com/view/10.1093/acref/9780199202720.001.0001/acref-9780199202720-e-2276</ref> and [[philosophy]]<ref>http://www.oxfordreference.com/view/10.1093/acref/9780199541430.001.0001/acref-9780199541430-e-2262</ref> a '''tuple''' is an ordered list of elements. In [[set theory]], an '''(ordered) <math>n</math>-tuple''' is a [[sequence]] (or ordered list) of <math>n</math> elements, where <math>n</math> is a non-negative integer. There is only one 0-tuple, an empty sequence. An <math>n</math>-tuple is [[Recursive definition|defined inductively]] using the construction of an [[ordered pair]]. Tuples are usually written by listing the elements within parentheses "<math>(\text{ })</math>" and separated by commas; for example, <math>(2, 7, 4, 1, 7)</math> denotes a 5-tuple. Sometimes other delimiters are used, such as square brackets "<math>[\text{ }]</math>" or angle brackets "<math>\langle\text{ }\rangle</math>". Braces "<math>\{\}</math>" are almost never used for tuples, as they are the standard notation for [[set (mathematics)|sets]].
 
Tuples are often used to describe other mathematical objects, such as [[Vector (mathematics and physics)|vectors]]. In computer science, tuples are directly implemented as [[product type]]s in most [[functional programming|functional programming languages]]. More commonly, they are implemented as [[Record (computer science)|record types]], where the components are labeled instead of being identified by position alone. This approach is also used in [[relational algebra]]. Tuples are also used in relation to programming the [[semantic web]]  with [[Resource Description Framework]] or RDF.
 
==Etymology==
The term originated as an abstraction of the sequence: single, double, triple, quadruple, quintuple, sextuple, septuple, octuple, ..., ''n''‑tuple, ..., where the prefixes are taken from the [[Latin]] names of the numerals. The unique 0‑tuple is called the null tuple. A 1‑tuple is called a singleton, a 2‑tuple is called an ordered pair and a 3‑tuple is a triple or triplet. ''n'' can be any nonnegative integer. For example, a [[complex number]] can be represented as a 2‑tuple, a [[quaternion]] can be represented as a 4‑tuple, an [[octonion]] can be represented as an 8‑tuple and a [[sedenion]] can be represented as a 16‑tuple.
 
Although these uses treat ''‑tuple'' as the suffix, the original suffix was ''‑ple'' as in "triple" (three-fold) or "decuple" (ten‑fold). This originates from a medieval Latin suffix ''‑plus'' (meaning "more") related to Greek ‑πλοῦς, which replaced the classical and late antique ''‑plex'' (meaning "folded"), as in "duplex".<ref>''OED'', ''s.v.'' "triple", "quadruple", "quintuple", "decuple"</ref>
 
===Names for tuples of specific lengths===
 
{| class="wikitable"
|-
! Tuple Length <math>n</math> !! Name !! Alternate names
|-
| align="right" | 0 || empty tuple || unit
|-
| align="right" | 1 || single ||
|-
| align="right" | 2 || double || pair / dual / twin
|-
| align="right" | 3 || triple || treble
|-
| align="right" | 4 || quadruple || quad
|-
| align="right" | 5 || quintuple || pentuple
|-
| align="right" | 6 || sextuple || hextuple
|-
| align="right" | 7 || septuple ||
|-
| align="right" | 8 || octuple ||
|-
| align="right" | 9 || nonuple ||
|-
| align="right" | 10 || decuple ||
|-
| align="right" | 11 || undecuple || hendecuple
|-
| align="right" | 12 || duodecuple ||
|-
| align="right" | 13 || tredecuple ||
|-
| align="right" | 100 || centuple ||
|}
 
==Properties==
The general rule for the identity of two <math>n</math>-tuples is
: <math>(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)</math> [[if and only if]] <math>a_1=b_1,\text{ }a_2=b_2,\text{ }\ldots,\text{ }a_n=b_n.</math>
 
Thus a tuple has properties that distinguish it from a [[Set (mathematics)|set]].
# A tuple may contain multiple instances of the same element, so {{break|
}}tuple <math>(1,2,2,3) \neq (1,2,3)</math>; but set <math>\{1,2,2,3\} = \{1,2,3\}</math>.
# Tuple elements are ordered: tuple <math>(1,2,3) \neq (3,2,1)</math>, but set <math>\{1,2,3\} = \{3,2,1\}</math>.
# A tuple has a finite number of elements, while a set or a multiset may have an infinite number of elements.
 
==Definitions==
 
There are several definitions of tuples that give them the properties described in the previous section.
 
===Tuples as functions===
An <math>n</math>-tuple can be regarded as a [[Function (mathematics)#Definition|function]], ''F'',  whose domain is the tuple's implicit set of element indices, ''X'', and whose codomain, ''Y'', is the tuple's set of elements. Formally:
: <math>(a_1, a_2, \dots, a_n) \equiv (X,Y,F)</math>
where:
: <math>
    \begin{align}
      X & = \{1, 2, \dots, n\}                      \\
      Y & = \{a_1, a_2, \ldots, a_n\}                \\
      F & = \{(1, a_1), (2, a_2), \ldots, (n, a_n)\} \\
    \end{align}
  </math>
 
===Tuples as nested ordered pairs===
Another way of formalizing tuples is as nested [[ordered pair]]s. This approach assumes that the notion of ordered pair has already been defined; thus a 2-tuple
# The 0-tuple (i.e. the empty tuple) is represented by the empty set <math>\emptyset</math>.
# An <math>n</math>-tuple, with <math>n > 0</math>, can be defined as an ordered pair of its first entry and an <math>(n-1)</math>-tuple (which contains the remaining entries when <math>n > 1</math>):
#: <math>(a_1, a_2, a_3, \ldots, a_n) = (a_1, (a_2, a_3, \ldots, a_n))</math>
This definition can be applied recursively to the <math>(n-1)</math>-tuple:
: <math>(a_1, a_2, a_3, \ldots, a_n) = (a_1, (a_2, (a_3, (\ldots, (a_n, \emptyset)\ldots))))</math>
 
Thus, for example:
: <math>
    \begin{align}
        (1, 2, 3) & = (1, (2, (3, \emptyset)))      \\
      (1, 2, 3, 4) & = (1, (2, (3, (4, \emptyset)))) \\
    \end{align}
  </math>
 
A variant of this definition starts "peeling off" elements from the other end:
# The 0-tuple is the empty set <math>\emptyset</math>.
# For <math>n > 0</math>:
#: <math>(a_1, a_2, a_3, \ldots, a_n) = ((a_1, a_2, a_3, \ldots, a_{n-1}), a_n)</math>
This definition can be applied recursively:
: <math>(a_1, a_2, a_3, \ldots, a_n) = ((\ldots(((\emptyset, a_1), a_2), a_3), \ldots), a_n)</math>
 
Thus, for example:
: <math>
    \begin{align}
        (1, 2, 3) & = (((\emptyset, 1), 2), 3)      \\
      (1, 2, 3, 4) & = ((((\emptyset, 1), 2), 3), 4) \\
    \end{align}
  </math>
 
===Tuples as nested sets===
Using [[ordered pair#Kuratowski definition|Kuratowski's representation for an ordered pair]], the second definition above can be reformulated in terms of pure [[set theory]]:
# The 0-tuple (i.e. the empty tuple) is represented by the empty set <math>\emptyset</math>;
# Let <math>x</math> be an <math>n</math>-tuple <math>(a_1, a_2, \ldots, a_n)</math>, and let <math>x \rightarrow b \equiv (a_1, a_2, \ldots, a_n, b)</math>. Then, <math>x \rightarrow b \equiv \{\{x\}, \{x, b\}\}</math>.  (The right arrow, <math>\rightarrow</math>, could be read as "adjoined with".)
 
In this formulation:
: <math>
  \begin{array}{lclcl}
    ()      & &                    &=& \emptyset                                    \\
            & &                    & &                                              \\
    (1)    &=& ()    \rightarrow 1 &=& \{\{()\},\{(),1\}\}                          \\
            & &                    &=& \{\{\emptyset\},\{\emptyset,1\}\}            \\
            & &                    & &                                              \\
    (1,2)  &=& (1)  \rightarrow 2 &=& \{\{(1)\},\{(1),2\}\}                        \\
            & &                    &=& \{\{\{\{\emptyset\},\{\emptyset,1\}\}\},    \\
            & &                    & & \{\{\{\emptyset\},\{\emptyset,1\}\},2\}\}    \\
            & &                    & &                                              \\
    (1,2,3) &=& (1,2) \rightarrow 3 &=& \{\{(1,2)\},\{(1,2),3\}\}                    \\
            & &                    &=& \{\{\{\{\{\{\emptyset\},\{\emptyset,1\}\}\}, \\
            & &                    & & \{\{\{\emptyset\},\{\emptyset,1\}\},2\}\}\}, \\
            & &                    & & \{\{\{\{\{\emptyset\},\{\emptyset,1\}\}\},  \\
            & &                    & & \{\{\{\emptyset\},\{\emptyset,1\}\},2\}\},3\}\}                                      \\
    \end{array}
  </math>
 
== Relational model ==
 
In [[database theory]], the [[relational model]] uses a tuple definition similar to [[#Tuples_as_functions|tuples as functions]], but each tuple element is identified by a distinct name, called an ''attribute'', instead of a number; this leads to a more [[user-friendly]] and practical notation.<ref name=ahv>[[Serge Abiteboul]], [[Richard Hull (computer scientist)|Richard Hull]], [[Victor Vianu]], ''Foundations of databases'', Addison-Wesley, 1995, ISBN 0-201-53771-0, p. 29&ndash;33</ref> A tuple in the relational model is formally defined as a finite [[function (mathematics)|function]] that maps attributes to values. For example:
: (player : "Harry", score : 25)
In this notation, attribute&ndash;value pairs may appear in any order. The distinction between tuples in the relational model and those in set theory is only superficial; the above example can be interpreted as a 2-tuple if an arbitrary [[total order]] is imposed on the attributes (e.g. <math>player \leq score</math>) and then the elements are distinguished by this ordering rather than by the attributes themselves. Conversely, a 2-tuple may be interpreted as relational model tuple over the attributes <math>\{1, 2\}</math>.<ref name=ahv/>
 
In the relational model, a [[Relation (database)|relation]] is a (possibly empty) finite set of tuples all having the same finite set of attributes. This set of attributes is more formally called the [[Sort (mathematical logic)|sort]] of the relation, or more casually referred to as the set of [[Column (database)|column names]].<ref name=ahv/> A tuple is usually implemented as a [[Row (database)|row]] in a [[database table]], but see [[relational algebra]] for means of deriving tuples not physically represented in a table.
 
== Type theory ==
{{main|Product type}}
In [[type theory]], commonly used in [[programming language]]s, a tuple has a [[product type]]; this fixes not only the length, but also the underlying types of each component. Formally:
: <math>(x_1, x_2, \ldots, x_n) : \mathsf{T}_1 \times \mathsf{T}_2 \times \ldots \times \mathsf{T}_n</math>
and the [[Projection (mathematics)|projection]]s are term constructors:
: <math>\pi_1(x) : \mathsf{T}_1,~\pi_2(x) : \mathsf{T}_2,~\ldots,~\pi_n(x) : \mathsf{T}_n</math>
 
The tuple with labeled elements used in the [[#Relational_model|relational model]] has a [[record type]]. Both of these types can be defined as simple extensions of the [[simply typed lambda calculus]].<ref name="pierce2002">{{cite book|last=Pierce|first=Benjamin|title=Types and Programming Languages|publisher=MIT Press|year=2002|isbn=0-262-16209-1|pages=126–132}}</ref>
 
The notion of a tuple in type theory and that in set theory are related in the following way: If we consider the natural [[model theory|model]] of a type theory, and use the Scott brackets to indicate the semantic interpretation<!-- do not link; that article needs to be a dab first-->, then the model consists of some sets <math>S_1, S_2, \ldots, S_n</math> (note: the use of italics here that distinguishes sets from types) such that:
: <math>[\![\mathsf{T}_1]\!] = S_1,~[\![\mathsf{T}_2]\!] = S_2,~\ldots,~[\![\mathsf{T}_n]\!] = S_n</math>
and the interpretation of the basic terms is:
: <math>[\![x_1]\!] \in [\![\mathsf{T}_1]\!],~[\![x_2]\!] \in [\![\mathsf{T}_2]\!],~\ldots,~[\![x_n]\!] \in [\![\mathsf{T}_n]\!]</math>.
 
The <math>n</math>-tuple of type theory has the natural interpretation as an <math>n</math>-tuple of set theory:<ref>Steve Awodey, [http://www.andrew.cmu.edu/user/awodey/preprints/stcsFinal.pdf ''From sets, to types, to categories, to sets''], 2009, [[preprint]]</ref>
: <math>[\![(x_1, x_2, \ldots, x_n)]\!] = ([\![x_1]\!], [\![x_2]\!], \ldots, [\![x_n]\!])</math>
The [[unit type]] has as semantic interpretation the 0-tuple.
 
==See also==
{{Wiktionary|tuple}}
* [[Arity]]
* [[Exponential object]]
* [[Formal language]]
* [[Multidimensional Expressions#MDX data types|OLAP: Multidimensional Expressions]]
* [[Prime k-tuple]]
* [[Relation (mathematics)]]
* [[Tuplespace]]
 
==Notes==
{{Reflist}}
 
==References==
The set theory definitions herein are found in any textbook on the topic, e.g.
{{refbegin}}
* [[Abraham Adolf Fraenkel]], [[Yehoshua Bar-Hillel]], [[Azriel Lévy]], ''[http://books.google.com/books?q=Foundations+of+set+theory&btnG=Search+Books Foundations of set theory]'', Elsevier Studies in Logic Vol. 67, Edition 2, revised, 1973, ISBN 0-7204-2270-1, p.&nbsp;33
* [[Gaisi Takeuti]], W. M. Zaring, ''Introduction to Axiomatic Set Theory'', Springer [[Graduate texts in mathematics|GTM]] 1, 1971, ISBN 978-0-387-90024-7, p.&nbsp;14
* George J. Tourlakis, ''[http://books.google.com/books?as_isbn=9780521753746 Lecture Notes in Logic and Set Theory. Volume 2: Set theory]'', Cambridge University Press, 2003, ISBN 978-0-521-75374-6, pp.&nbsp;182–193
* [[Keith Devlin]], ''The Joy of Sets''. Springer Verlag, 2nd ed., 1993, ISBN 0-387-94094-4, pp.&nbsp;7–8
{{refend}}
 
<!--Interwikies-->
 
<!--Categories-->
[[Category:Data management]]
[[Category:Mathematical notation]]
[[Category:Sequences and series]]
[[Category:Basic concepts in set theory]]
[[Category:Type theory]]

Revision as of 20:00, 12 February 2014

Hello!
My name is King and I'm a 24 years old girl from Austria.

my web blog :: music making software download free