# Ribbon category

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, a ribbon category is a particular type of braided monoidal category.

## Definition

A monoidal category ${\mathcal {C}}$ is, loosely speaking, a category equipped with a notion resembling the tensor product (of vector spaces, say). That is, for any two objects $C_{1},C_{2}\in {\mathcal {C}}$ , there is an object $C_{1}\otimes C_{2}\in {\mathcal {C}}$ . The assignment $C_{1},C_{2}\mapsto C_{1}\otimes C_{2}$ is supposed to be functorial and needs to require a number of further properties such as a unit object 1 and an associativity isomorphism. Such a category is called braided if there are isomorphisms

$c_{C_{1},C_{2}}:C_{1}\otimes C_{2}{\stackrel {\cong }{\rightarrow }}C_{2}\otimes C_{1}.$ A braided monoidal category is called a ribbon category if the category is rigid and has a family of twists. The former means that for each object $C$ there is another object (called the dual), $C^{*}$ , with maps

$1\rightarrow C\otimes C^{*},C\otimes C^{*}\rightarrow 1$ such that the compositions

$C^{*}\cong C^{*}\otimes 1\rightarrow C^{*}\otimes (C\otimes C^{*})\cong (C^{*}\otimes C)\otimes C^{*}\rightarrow 1\otimes C^{*}\cong C^{*}$ $C\in {\mathcal {C}}$ , $\theta _{C}:C\rightarrow C$ such that

$\theta _{C_{1}\otimes C_{2}}=c_{C_{2},C_{1}}c_{C_{1},C_{2}}(\theta _{C_{1}}\otimes \theta _{C_{2}}).$ To be a ribbon category, the duals have to be compatible with the braiding and the twists in a certain way.

An example is the category of projective modules over a commutative ring. In this category, the monoidal structure is the tensor product, the dual object is the dual in the sense of (linear) algebra, which is again projective. The twists in this case are the identity maps. A more sophisticated example of a ribbon category are finite-dimensional representations of a quantum group.

The name ribbon category is motivated by a graphical depiction of morphisms.

## Variant

A strongly ribbon category is a ribbon category C equipped with a dagger structure such that the functor †: Cop → C coherently preserves the ribbon structure.