Robust optimization: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Removed obviously promotional link to commercial product
en>Zhoulearner
No edit summary
 
Line 1: Line 1:
[[File:DART ion source capsule.jpg|thumb|right||A [[Capsule (pharmacy)|capsule]] being analyzed is held in the sample chamber between the DART ion source (right) and the spectrometer inlet (cone on left).|200px]]
Greetings! I am Myrtle Shroyer. My day occupation is a librarian. North Dakota is our birth location. over the counter std test ([http://www.animecontent.com/user/D2456 click through the following page]) favorite hobby for my kids and me is to play baseball and I'm trying to make it a profession.
'''DART''' ('''Direct Analysis in Real Time''')  is an [[atmospheric pressure]] [[ion source]] that instantaneously ionizes gases, liquids and solids in open air under [[Ambient pressure|ambient]] conditions.<ref>{{cite journal |author=R.B. Cody, J.A. Laramée, H.D. Durst |journal=Anal. Chem. |year=2005 |volume=77 |issue=8 |pages=2297–2302 |pmid=15828760 |doi=10.1021/ac050162j |title=Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions}}</ref>  It was developed in 2005 by Laramee and Cody and is now marketed commercially by [[JEOL]] and [[IonSense]].<ref>[http://jeolusa.com/tabid/230/Default.aspx 2. “Direct Analysis in Real Time (DARTtm) Mass Spectrometry” Cody, R. B.; Laramée, J. A.;  Nilles, J.M.; Durst, H. D. JEOL News; 2005]</ref> It was among the first [[ambient ionization]] techniques not requiring sample preparation, so solid and liquid materials can be analyzed by [[mass spectrometry]] in their native state. [[Ionization]] can take place directly on the sample surface, such as, currency bills, tablets, bodily fluids (blood, saliva and urine), glass, plant leaves, fruits & vegetables and even clothing.  Liquids are analyzed by dipping an object (such as a glass rod) into the liquid sample and then presenting it to the DART ion source.  Vapors are introduced directly into the DART gas stream.
 
== Principle of operation ==
=== Ionization process ===
 
The ionization process involves an interaction between the [[analyte]] [[molecule]] (S) and electronically excited atoms or vibronically excited molecules (metastable species – M*):{{Citation needed|date=May 2010}}
 
:<math>M^* + S \to S^{+\bullet} + M + e^-\,</math>
 
Upon [[collision]] between the excited gas molecule (M*) and the surface of the sample, an energy transfer takes place, from the excited gas molecule (M*) to the neutral analyte molecule (S).  This causes an [[electron]] to be released from the analyte molecule, producing a [[Radical (chemistry)|radical]] [[ion|cation]].  The molecular cation is then ejected from the sampling surface and travels to the mass analyzer along with the gas stream (typically [[Nitrogen|N<sub>2</sub>]] or [[Neon|Ne]]).  The process presented in the above equation is called [[Penning ionization]].  For this ionization process to take place, the energy of the excited state gas molecule must be higher than the [[ionization potential]] of the neutral molecule.
 
When [[Helium|He]] is used as the carrier gas, the ionization process occurs by the following mechanism:
First an excited state He atom collides with an atmospheric pressure [[water]] molecule and ionizes it:
 
:<math>He(2^3S) + H_2O \to H_2O^{+\bullet} + He(1^1S) + e^-</math>
 
The ionized water molecule then undergoes several reactions with other neutral water molecules resulting in the formation of a [[protonation|protonated]] water [[Cluster (physics)|cluster]]:
 
:<math>H_2O^{+\bullet}  + H_2O \to H_3O^+ + OH^{\bullet}</math>
 
:<math>H_3O^+  + nH_2O \to \left[(H_2O\right)_{n}H]^{+}</math>
 
The water cluster then interacts with the analyte molecule (S) generating a protonated molecule.
 
:<math>\left[(H_2O\right)_nH]^{+}  + S \to SH^+ + nH_2O</math>
 
DART can also operate in the negative ion mode by which negatively charged species are formed.  The negative ion formation process is under current discussion and investigation.
 
[[File:DART ion source schematic.gif|thumb|right|400 px|Schematic diagram of the DART ion source]]
 
=== Formation of metastable species ===
 
As the gas (N<sub>2</sub>, Ne or He) enters the ion source, an [[electric potential]] in the range of +1 to +5 kV is applied.  This generates a glow discharge containing ionized gas, electrons and excited state atoms/molecules (metastable species).  A potential of 100 V applied to the [[Electrostatics|electrostatic]] lenses removes charged particles from the gas stream and only excited state species flow to the third chamber.  The gas stream in the third chamber can be heated from RT to 250&nbsp;°C.  Heating is optional but may be necessary depending on the surface or chemical being analyzed.  An insulator cap at the terminal end of the ion source protects the operator from harm.
 
The excited-state species can interact directly with the sample which can be a solid, liquid or gas to desorb and ionize the analyte.
 
The distance between the ion source and the inlet of the mass spectrometer is 5 to 25&nbsp;mm.
The ions formed are directed to the mass spectrometer inlet by both the gas flow and a slight vacuum in the spectrometer inlet.  Although optimum geometries exist for specific applications, the exact positioning, distance and angle of DART ion source with respect to the sample surface and the mass spectrometer inlet are not critical.
 
== Source to analyzer interface ==
 
Ions entering the mass spectrometer first go through a source - to - analyzer interface, which was designed in order to minimize spectrometer contamination.
The ions are directed to the ion guide through orifice 1 and 2 by applying a slight potential difference between them: orifice 1 - 30V and orifice 2 - 5V.
It is clear from the diagram that the space between the two orifices is not horizontal but rather diagonal.  Species containing charge (ions) are attracted to the second orifice, but neutral molecules travel in a straight pathway and thus get trapped in that region.  The contamination is then removed by the pump.
 
== Mass spectra ==
 
DART produces relatively simple mass spectra, dominated by protonated molecules [M+H]<sup>+</sup> in positive-ion mode, or deprotonated molecules [M-H]<sup>-</sup> in negative-ion mode.  Depending on the nature of the molecule, other species may be formed, such as M<sup>+.</sup> from polynuclear aromatic hydrocarbons.  Fragmentation may occasionally be observed for some molecules.  Multiple-charge ions and alkali metal cation aducts are never observed, but addition of ammonia or other "dopants" to the DART gas stream can be used to form single-charge adducts such as [M+NH<sub>4</sub>]<sup>+</sup> or [M+Cl]<sup>-</sup> for compounds that would not readily form molecular ions or protonated molecules.  For example, the explosives nitroglycerin and HMX do not form [M-H]<sup>-</sup>, but readily form [M+Cl]<sup>-</sup> if chloride is present.
 
== Applications ==
DART can be applied to a wide range of applications, such as, the fragrance industry, pharmaceutical industry, foods and spices, forensic science and health.
 
In forensic science, DART has been used for analysis of sexual assault evidence<ref>{{cite journal |author=Musah RA, Cody RB, Dane AJ, Vuong AL, Shepard JR|year=2012|month= |title=Direct analysis in real time mass spectrometry for analysis of sexual assault evidence|journal= Rapid Communications in Mass Spectrometry|volume= 26|issue= |pages= 1039–1046|id= |doi=10.1002/rcm.6198 |pmid=22467453}}</ref> and of synthetic cannabinoids in herbal samples.<ref>{{cite journal |author=Musah RA, Domin MA, Walling MA, Shepard JR|year=2012|month= |title=Rapid identification of synthetic cannabinoids in herbal samples via direct analysis in real time mass spectrometry|journal= Rapid Communications in Mass Spectrometry|volume= 26|issue= 9|pages= 1109–1114|id= |doi=10.1002/rcm.6205 |pmid=22467461}}</ref>
 
In the fragrance industry, the deposition and release of a fragrance on surfaces such as, fabric and hair is often studied.  Use of DART compared to traditional methods minimizes sample amount, sample preparation, eliminates extraction steps, decreases limit of detection and analysis time.<ref>{{cite journal |author=O.P. Haefliger, N. Jeckelmann|journal=Rapid Commun. Mass Spectrom.|year=2007 |volume=21 |pages=1361–1366 |doi=10.1002/rcm.2969 |title=Direct mass spectrometric analysis of flavors and fragrances in real applications using DART |pmid=17348088 |issue=8}}</ref>
 
In the pharmaceutical industry, the production and destruction of counterfeit drugs is becoming an international problem.<ref>{{cite news|url=http://www.cbc.ca/correspondent/feature_051211.html|publisher=CBC News|title=Bad Medicine|date=December 11, 2005}} {{Dead link|date=September 2010|bot=RjwilmsiBot}}</ref><ref>{{cite news|url=http://www.who.int/mediacentre/factsheets/fs275/en|publisher=World Health Organization|title=Counterfeit medicines|date=November 14, 2006}}</ref>  Some countries in which this occurs are United Kingdom, China, Russia, Argentina, Nigeria and India.  Dart can detect active ingredients in medicine in a tablet form; there is no need for sample preparation such as, crushing or extracting.
 
DART was used to directly analyze a red pepper pod in three different places: the membrane (white part holding the seeds), the seeds and the flesh of the pepper. The analyte of interest was capsaicin, a natural ingredient of a red pepper pod that is responsible for the burning sensation when eating chilies.  The spectrum obtained revealed that the highest concentration of capsaicin is in the membrane.
 
DART has been used in the study of genus ''[[Allium]]'' plants, e.g., to identify the lachrymatory compound, [[syn-propanethial-S-oxide]], C<sub>2</sub>H<sub>5</sub>CH=S=O, in onion, ''[[Allium cepa]]'',<ref name=Block2010>{{cite book|author=Block, E.|title=Garlic and Other Alliums: The Lore and the Science |url=http://books.google.com/?id=6AB89RHV9ucC&printsec=frontcover|publisher=Royal Society of Chemistry|year=2010|isbn=0-85404-190-7}}</ref> a previously unknown lachrymatory compound, ''syn''-butanethial ''S''-oxide, C<sub>3</sub>H<sub>7</sub>CH=S=O, in ''[[Allium siculum]]'',<ref>{{cite journal |author=Kubec R, Cody RB, Dane AJ, Musah RA, Schraml J, Vattekkatte A, Block E|year=2010|month= |title=Applications of DART Mass Spectrometry in ''Allium'' Chemistry. (''Z'')-Butanethial ''S''-Oxide and 1-Butenyl Thiosulfinates and their ''S''-(''E'')-1-Butenylcysteine ''S''-Oxide Precursor from ''Allium siculum''|journal=  Journal of Agricultural and Food Chemistry|volume= 58|issue= 2|pages= 1121–1128|id= |doi=10.1021/jf903733e |pmid=20047275}}</ref> pyrithione fron ''[[Allium stipitatum]]''<ref name=Block2011>{{Cite journal |last1=Block |first1=E. |last2=Dane |first2=A.J. |last3=Cody |first3=R.B. |year=2011 |title= Crushing Garlic and Slicing Onions: Detection of Sulfenic Acids and Other Reactive Organosulfur Intermediates from Garlic and Other Alliums Using Direct Analysis in Real Time-Mass Spectrometry (DART-MS) |journal= Phosphorus, Sulfur, Silicon and the Related Elements |volume=186 |issue=5 |pages=1085–1093|doi=10.1080/10426507.2010.507728 |lastauthoramp=yes |postscript=<!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}} }}</ref> and syn-propanethial-S-oxide isomer 2-propene[[sulfenic acid]], CH<sub>2</sub>=CHCH<sub>2</sub>SOH, which is the very short-lived precursor to [[allicin]] from cutting [[garlic]], ''Allium sativum''.<ref name=Block2011b>{{cite journal |author=Block E, Dane AJ, Thomas S, Cody RB|year=2010|month= |title=Applications of Direct Analysis in Real Time–Mass Spectrometry (DART-MS) in ''Allium'' Chemistry. 2-Propenesulfenic and 2-Propenesulfinic Acids, Diallyl Trisulfane ''S''-Oxide and Other Reactive Sulfur Compounds from Crushed Garlic and Other Alliums|journal=  Journal of Agricultural and Food Chemistry|volume= 58|issue= 8|pages= 4617–4625|id= |doi =10.1021/jf1000106 |pmid=20225897}}</ref> Recently, a so-called "cDART" (confined-DART) interface has been developed, in which the plasma generated by the atmospheric pressure glow discharge collides and ionizes the gas-phase molecules in a Tee-shaped flow tube instead of in open air. The confined ion source, which significantly improves ionization efficiency of gaseous molecules,  was applied in the real time analysis of [[volatile organic compound]]s of [[lemon]] and onion. The onion was cut with a steel rod in a sample container continuously swept by nitrogen flow. While many of the onion volatiles found by cDART were identical to those found in the earlier DART study of onions,<ref name=Block2011b></ref> several previously unknown higher mass ions were also seen, presumably due to the increased sensitivity of cDART.<ref>{{cite journal |author=Li Y|year=2012|month= |title=Confined direct analysis in real time ion source and its applications in analysis of volatile organic compounds of ''Citrus limon'' (lemon) and ''Allium cepa'' (onion) |journal=  Rapid Communications in Mass Spectrometry|volume= 26|issue= |pages= 1194–1202|id= |doi =10.1002/rcm.6217 |pmid= }}</ref>
 
==See also==
*[[Desorption electrospray ionization]]
*[[Electric glow discharge]]
*[[Atmospheric pressure chemical ionization]]
*[[Desorption atmospheric pressure photoionization]]
 
== References ==
{{Reflist}}
 
== Patents ==
*Robert B. Cody and James A. Laramee, “Method for atmospheric pressure ionization” {{US patent|6949741}} issued September 27, 2005.  (Priority date: April 2003).
*James A. Laramee and Robert B. Cody “Method for Atmospheric Pressure Analyte Ionization” {{US patent|7,112,785 }} issued September 26, 2006.
 
{{Mass spectrometry}}
 
[[Category:Ion source]]
[[Category:Measuring instruments]]

Latest revision as of 10:08, 13 December 2014

Greetings! I am Myrtle Shroyer. My day occupation is a librarian. North Dakota is our birth location. over the counter std test (click through the following page) favorite hobby for my kids and me is to play baseball and I'm trying to make it a profession.