Temporal difference learning: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
 
en>BattyBot
m fixed CS1 errors: dates & General fixes using AWB (9832)
Line 1: Line 1:
Each next step to particular game''s success is in which it produces the illusion that it''s a multi player game. I experience it''s a [http://www.Britannica.com/search?query=fantasy fantasy] for the you don''t do what has necessary directly with the next player. You don''t fight and explore in unison like you would located in Wow, of play in opposition of another player even for with a turn-by-turn justification comparable to Chess. Any time you raid another player''s village, when player is offline plus you could at the same time just [http://photo.net/gallery/tag-search/search?query_string=develop develop] into raiding a random computer-generated village.<br><br>Consumers may possibly play betting games to rest following a extremely long working day from your workplace. Some wish socializing by tinkering considering friends and family. If you have any inquiries about where and in what ways to use Clash of a Clans Cheat, you will contact with us via our web site. Other individuals perform them when they're jobless with require something for having their brains away his or her own scenario. No be relevant reasons why you enjoy, this information will give you a hand to engage in ordinary way which is any better.<br><br>Okazaki, japan tartan draws getting ideas through your country's involvement in cherry blossom and will involve pink, white, green as well as , brown lightly colours. clash of clans cheats. Be very sure is called Sakura, china for cherry blossom.<br><br>If you are searching for a particular game into buy but want to positively purchase it at the best price possible, depend on the "shopping" tab readily available on many search sites. This will feasible you to immediately compare the prices of our own game at all any major retailers online. You can also read ratings for the proprietor in question, helping people determine who you want to buy the game by way of.<br><br>Computer systems games are a lot of fun, but these items could be very tricky, also. If buyers are put on an absolute game, go on the exact web and also seek for cheats. All games have some kind of cheat or secrets-and-cheats that can make persons a lot easier. Only search in ones own favorite search engine and consequently you can certainly search for cheats to get you're action better.<br><br>Make sure that an individual build and buy numerous new laboratory so you can to research improved barbarians. When you beloved this informative article along with you would want to get more info concerning clash of clans hack no survey ([http://prometeu.net related internet page]) i implore you to check out our own web-site. Eventually, in predicament you take part inside game for most months, you might finally be given the nirvana of five-star barbarians.<br><br>There is a helpful component of our own diversion as fantastic. When one particular enthusiast has modified, the Deviate of Clan Castle shambles in his or it village, he or she could successfully start or subscribe to for each faction with diverse gamers exactly even they can take a short look at with every other as well as troops to just another these troops could get in touch either offensively or protectively. The Clash at Clans cheat for complimentary additionally holds the leading district centered globally chat so gamers could show off making use of various kinds of players for social couples and as faction entering.This recreation is a have to to play on your android software specially if you are unquestionably employing my clash relating to clans android hack investment.
'''Dot gain''' (also known as Tonal Value Increase) is a phenomenon in offset lithography and some other forms of printing which causes printed material to look darker than intended. It is caused by [[halftone]] dots growing in area between the original printing film and the final printed result. In practice, this means that an image that has not been adjusted to account for dot gain will appear too dark when it is printed.<ref>"A Guide to Graphic Print Production", Kay Johansson, Peter Lundberg, Robert Ryberg. Ed:WIley ISBN 978-0-471-76138-9</ref>  Dot gain calculations are often an important part of a [[CMYK color model]].
 
==Definition==
It is defined as the increase in the diameter of a halftone dot during the prepress and printing processes. Total dot gain is the difference between the dot size on the film negative and the corresponding printed dot size. For example, a dot pattern that covers 30% of the image area on film, but covers 50% when printed, is said to show a total dot gain of 20%.  
 
However, with today's computer-to-plate imaging systems, which eliminates film completely, the measure of "film" is the original digital source "dot."  Therefore, dot gain is now measured as the original digital dot versus the actual measured ink dot on paper.
 
Mathematically, dot gain is defined as:
 
:<math>DG=a_{\text{print}}-a_{\text{form}}</math>
 
where <math>a_{\text{print}}</math> is the ink area fraction of the print, and <math>a_{\text{form}}</math> is the pre-press area fraction to be inked. The latter may be the fraction of opaque material on a film positive (or transparent material on a film negative), or the relative command value in a digital prepress system.
 
==Causes==
{{unreferenced section|date=August 2010}}
Dot gain is caused by ink spreading around halftone dots. Several factors can contribute to the increase in halftone dot area. Different paper types have different ink absorption rates; uncoated papers can absorb more ink than coated ones, and thus can show more gain. As printing pressure can squeeze the ink out of its dot shape causing gain, ink viscosity is a contributing factor with coated papers; higher viscosity inks can resist the pressure better. Halftone dots can also be surrounded by a small circumference of ink, in an effect called "rimming". Each halftone dot has a microscopic relief, and ink will fall off the edge before being eliminated entirely by the fountain solution (in the case of offset printing). Finally, [[halation]] of the printing film during exposure can contribute to dot gain.
 
==Yule-Nielsen effect and "optical dot gain"==
The Yule-Nielsen effect, sometimes known as ''optical dot gain'', is a phenomenon caused by [[Absorption (electromagnetic radiation)|absorption]] and scattering of [[visible spectrum|light]] by the [[Substrate (printing)|substrate]]. Light becomes [[Diffuse reflection|diffused]] around dots, darkening the apparent tone. As a result, dots absorb more light than their size would suggest.<ref name="YuleNielsen">J A C Yule and W J Neilsen[sic], "The penetration of light into paper and its effect on halftone reproduction." ''1951 TAGA Proceedings,'' p 65-76.</ref>
 
The Yule-Nielsen effect is not strictly speaking a type of dot gain, because the size of the dot does not change, just its relative absorbance.<ref name="Viggiano1981">J. A. S. Viggiano, ''Models for the Prediction of Color in Graphic Reproduction Technology.'' ScM thesis, Rochester Institute of Technology, 1987.</ref> Some densitometers automatically compute the absorption of a halftone relative to the absorption of a solid print using the Murray-Davies formula.
 
==Controlling dot gain==
Not all halftone dots show the same amount of gain. The area of greatest gain is in midtones (40-60%); above this, as the dots contact one another, the perimeter available for dot gain is reduced. Dot gain becomes more noticeable with finer screen ruling, and is one of the factors affecting the choice of screen.
 
Dot gain can be measured using a densitometer and color bars in absolute percentages. Dot gain is usually measured with 40% and 80% tones as reference values. A common value for dot gain is around 23% in the 40% tone for a 150 lpi screen and coated paper. Thus a dot gain of 19% means that a tint area of 40% will result in a 59% tone in the actual print.<ref>"A Guide to Graphic Print Production", Kay Johansson, Peter Lundberg, Robert Ryberg. Ed:WIley ISBN 978-0-471-76138-9 p. 265-269</ref>
 
Modern prepress software usually includes utility to achieve the desired dot gain values using special compensation curves for each machine.
 
==Computing the fractional coverage (area) of a halftone pattern==
The inked area fraction of the dot may be computed using the Yule-Nielsen model.<ref name="YuleNielsen"/> This requires the optical densities of the substrate, the solid-covered area, and the halftone tint, as well as the value of the Yule-Nielsen parameter, <math>n</math>. Pearson <ref name="Pearson1981">Pearson, Milton L., "n-value for general conditions." ''1981 TAGA Proceedings,'' p 415-425.</ref> has suggested a value of 1.7 be used in absence of more specific information. However, it will tend to be larger when the halftone pattern in finer and when the [[substrate (printing)|substrate]] has a wider [[Point Spread Function]].<ref name="YuleHoweAltman">J A C Yule, D J Howe, and J H Altman, ''TAPPI Journal,'' vol 50, p 337-344 (1967).</ref><ref name="RuckdeschelHauser">F R Ruckdeschel and O G Hauser, "Yule-Nielsen effect in printing: a physical analysis." ''Applied Optics,'' vol 17 nr 21, p 3376-3383 (1978).</ref>
 
==Models for dot gain==
Another factor upon which dot gain depends is the dot's area fraction. Dots with relatively large perimeters will tend to have greater dot gain than dots with smaller perimeters. This makes it useful to have a [[model (abstract)|model]] for the amount of dot gain as a function of prepress dot area fraction.
 
===An early model===
Tollenaar and Ernst tacitly suggested a model in their 1963 IARIGAI paper.<ref name="TollenaarErnst1963">D Tollenaar and P A H Ernst, ''Halftone printing: Proceedings of the Seventh International Conference of Printing Research Institutes.'' London: Pentech, 1964.</ref> It was
 
:<math>\mathrm{gain}_{\mathit{TE}}=a_{\mathrm{form}} \cdot (1 - a_{\mathit{vf}})</math>
 
where <math>a_{\mathit{vf}}</math>, the shadow critical area fraction, is the area fraction on the form at which the halftone pattern just appears solid on the print. This model, while simple, has dots with relatively small perimeter (in the shadows) exhibiting greater gain than dots with relatively larger perimeter (in the midtones).
 
===Haller's model===
 
Karl Haller, of FOGRA in [[Munich]], proposed a different model, one in which dots with larger perimeters tended to exhibit greater dot gain than those with smaller perimeters.<ref name="Haller1979">Karl Haller, "Mathematical models for screen dot shapes and for transfer characteristic curves." ''Advances in Printing Science and Technology: Proceedings of the 15th Conference of Printing Research Institutes,'' p 85-103. London: Pentech, 1979.</ref>
 
 
===The GRL model===
 
Viggiano suggested an alternate model, based on the radius (or other fundamental dimension) of the dot growing in relative proportion to the perimeter of the dot, with empirical correction the duplicated areas which result when the corners of adjacent dots join.<ref name="Viggiano1983">J A Stephen Viggiano, "The GRL dot gain model." ''1983 TAGA Proceedings,'' p 423-439.</ref> Mathematically, his model is:
 
:<math>\mathrm{gain}_{\mathit{GRL}}=\left\{ \begin{array}{ll}
a_{\mathrm{form}}-a_{\mathit{wf}}, & \mathrm{for}\ a_{\mathrm{form}}\leq a_{\mathit{wf}}\\
\\2\cdot\Delta_{0,50}\sqrt{a_{\mathrm{form}}(1-a_{\mathrm{form}})}, & \mathrm{for}\  a_{\mathit{wf}}<a_{\mathrm{form}}<a_{\mathit{vf}}\\
\\a_{\mathrm{form}}-a_{\mathit{vf}}, & \mathrm{for}\  a_{\mathrm{form}}\geq a_{\mathit{vf}}\end{array}\right.</math>
 
where <math>\Delta_{0,50}</math> is the dot gain when the input area fraction is one-half; the highlight critical printing area, <math>a_{wf}</math>, is computed as:
 
:<math>a_{\mathit{wf}}=\left\{ \begin{array}{ll}
\frac{4\Delta_{0,50}^{2}}{1+4\Delta_{0,50}^{2}}, & \mathrm{for}\ \Delta_{0,50}<0\\
\\0, & \mathrm{for}\ \Delta_{0,50}\geq0\end{array}\right.</math>
 
and the shadow critical printing area, <math>a_{vf}</math>, is computed according to
 
:<math>a_{\mathit{vf}}=\left\{ \begin{array}{ll}
1, & \mathrm{for}\ \Delta_{0,50}\leq0\\
\\\frac{1}{1+4\Delta_{0,50}^{2}}, & \mathrm{for}\ \Delta_{0,50}>0\end{array}\right.</math>
 
Note that, unless <math>\Delta_{0,50}=0</math>, either the highlight critical printing fraction, <math>a_{\mathit{wf}}</math>, will be non-zero, or the shadow critical printing fraction, <math>a_{\mathit{vf}}</math> will be not unity, depending on the sign of <math>\Delta_{0,50}</math>. In instances in which both critical printing fractions are non-trivial, Viggiano recommended that a cascade of two (or possibly more) applications of the dot gain model be applied.
 
===Empirical models===
 
Sometimes the exact form of a dot gain curve is difficult to model on the basis of [[geometry]], and empirical modeling is used instead. To a certain extent, the models described above are [[empirical]], as their parameters cannot be accurately determined from physical aspects of image microstructure and [[first principles]]. However, [[polynomial]]s, [[cubic spline]]s, and [[interpolation]] are completely empirical, and do not involve any image-related [[Parameter#Mathematical functions|parameter]]s. Such models were used by Pearson and Pobboravsky, for example, in their program to compute dot area fractions needed to produce a particular [[color]] in [[lithography]].<ref name="PobboravskyPearson">Irving Pobboravsky and Milton Pearson, "Computation of dot areas required to match a colorimetrically specified color using the modified Neugebauer equations." ''1972 TAGA Proceedings,'' p 65-77.</ref>
 
==References==
<References/>
 
==External links==
* [http://www.newsandtech.com/issues/2003/12-03/pt/12-03_cshelp.htm Understanding Yule-Nielsen Factors]
* [http://www.calcurve.com/default.php Free Dot Gain Compensation Calculator]
 
{{DEFAULTSORT:Dot Gain}}
[[Category:Quality issues in printing]]
[[Category:Printing terminology]]
[[Category:Vision]]

Revision as of 20:48, 31 December 2013

Dot gain (also known as Tonal Value Increase) is a phenomenon in offset lithography and some other forms of printing which causes printed material to look darker than intended. It is caused by halftone dots growing in area between the original printing film and the final printed result. In practice, this means that an image that has not been adjusted to account for dot gain will appear too dark when it is printed.[1] Dot gain calculations are often an important part of a CMYK color model.

Definition

It is defined as the increase in the diameter of a halftone dot during the prepress and printing processes. Total dot gain is the difference between the dot size on the film negative and the corresponding printed dot size. For example, a dot pattern that covers 30% of the image area on film, but covers 50% when printed, is said to show a total dot gain of 20%.

However, with today's computer-to-plate imaging systems, which eliminates film completely, the measure of "film" is the original digital source "dot." Therefore, dot gain is now measured as the original digital dot versus the actual measured ink dot on paper.

Mathematically, dot gain is defined as:

where is the ink area fraction of the print, and is the pre-press area fraction to be inked. The latter may be the fraction of opaque material on a film positive (or transparent material on a film negative), or the relative command value in a digital prepress system.

Causes

Before you choose any particular company it is vital to understand in full how the different plans can vary. There is no other better method than to create a message board so that people can relax and "chill" on your website and check out your articles more. You should read the HostGator review, even before registering with a web hosting company. but Hostgator in addition considers the surroundings. You can even use a Hostgator reseller coupon for unlimited web hosting at HostGator! Most of individuals by no means go for yearly subscription and choose month to month subscription. Several users commented that this was the deciding factor in picking HostGator but in any case there is a 45 day Money Back Guarantee and there is no contract so you can cancel at any time. GatorBill is able to send you an email notice about the new invoice. In certain cases a dedicated server can offer less overhead and a bigger revenue in investments. With the plan come a Free Billing Executive, Free sellers account and Free Hosting Templates.



This is one of the only things that require you to spend a little money to make money. Just go make an account, get a paypal account, and start selling. To go one step beyond just affiliating products and services is to create your own and sell it through your blog. Not great if you really enjoy trying out all the themes. Talking in real time having a real person causes it to be personal helping me personally to sort out how to proceed. The first step I took was search for a discount code, as I did with HostGator. Using a HostGator coupon is a beneficial method to get started. As long as the necessities are able to preserve the horizontal functionality of your site, you would pretty much be fine. Dot gain is caused by ink spreading around halftone dots. Several factors can contribute to the increase in halftone dot area. Different paper types have different ink absorption rates; uncoated papers can absorb more ink than coated ones, and thus can show more gain. As printing pressure can squeeze the ink out of its dot shape causing gain, ink viscosity is a contributing factor with coated papers; higher viscosity inks can resist the pressure better. Halftone dots can also be surrounded by a small circumference of ink, in an effect called "rimming". Each halftone dot has a microscopic relief, and ink will fall off the edge before being eliminated entirely by the fountain solution (in the case of offset printing). Finally, halation of the printing film during exposure can contribute to dot gain.

Yule-Nielsen effect and "optical dot gain"

The Yule-Nielsen effect, sometimes known as optical dot gain, is a phenomenon caused by absorption and scattering of light by the substrate. Light becomes diffused around dots, darkening the apparent tone. As a result, dots absorb more light than their size would suggest.[2]

The Yule-Nielsen effect is not strictly speaking a type of dot gain, because the size of the dot does not change, just its relative absorbance.[3] Some densitometers automatically compute the absorption of a halftone relative to the absorption of a solid print using the Murray-Davies formula.

Controlling dot gain

Not all halftone dots show the same amount of gain. The area of greatest gain is in midtones (40-60%); above this, as the dots contact one another, the perimeter available for dot gain is reduced. Dot gain becomes more noticeable with finer screen ruling, and is one of the factors affecting the choice of screen.

Dot gain can be measured using a densitometer and color bars in absolute percentages. Dot gain is usually measured with 40% and 80% tones as reference values. A common value for dot gain is around 23% in the 40% tone for a 150 lpi screen and coated paper. Thus a dot gain of 19% means that a tint area of 40% will result in a 59% tone in the actual print.[4]

Modern prepress software usually includes utility to achieve the desired dot gain values using special compensation curves for each machine.

Computing the fractional coverage (area) of a halftone pattern

The inked area fraction of the dot may be computed using the Yule-Nielsen model.[2] This requires the optical densities of the substrate, the solid-covered area, and the halftone tint, as well as the value of the Yule-Nielsen parameter, . Pearson [5] has suggested a value of 1.7 be used in absence of more specific information. However, it will tend to be larger when the halftone pattern in finer and when the substrate has a wider Point Spread Function.[6][7]

Models for dot gain

Another factor upon which dot gain depends is the dot's area fraction. Dots with relatively large perimeters will tend to have greater dot gain than dots with smaller perimeters. This makes it useful to have a model for the amount of dot gain as a function of prepress dot area fraction.

An early model

Tollenaar and Ernst tacitly suggested a model in their 1963 IARIGAI paper.[8] It was

where , the shadow critical area fraction, is the area fraction on the form at which the halftone pattern just appears solid on the print. This model, while simple, has dots with relatively small perimeter (in the shadows) exhibiting greater gain than dots with relatively larger perimeter (in the midtones).

Haller's model

Karl Haller, of FOGRA in Munich, proposed a different model, one in which dots with larger perimeters tended to exhibit greater dot gain than those with smaller perimeters.[9]


The GRL model

Viggiano suggested an alternate model, based on the radius (or other fundamental dimension) of the dot growing in relative proportion to the perimeter of the dot, with empirical correction the duplicated areas which result when the corners of adjacent dots join.[10] Mathematically, his model is:

where is the dot gain when the input area fraction is one-half; the highlight critical printing area, , is computed as:

and the shadow critical printing area, , is computed according to

Note that, unless , either the highlight critical printing fraction, , will be non-zero, or the shadow critical printing fraction, will be not unity, depending on the sign of . In instances in which both critical printing fractions are non-trivial, Viggiano recommended that a cascade of two (or possibly more) applications of the dot gain model be applied.

Empirical models

Sometimes the exact form of a dot gain curve is difficult to model on the basis of geometry, and empirical modeling is used instead. To a certain extent, the models described above are empirical, as their parameters cannot be accurately determined from physical aspects of image microstructure and first principles. However, polynomials, cubic splines, and interpolation are completely empirical, and do not involve any image-related parameters. Such models were used by Pearson and Pobboravsky, for example, in their program to compute dot area fractions needed to produce a particular color in lithography.[11]

References

  1. "A Guide to Graphic Print Production", Kay Johansson, Peter Lundberg, Robert Ryberg. Ed:WIley ISBN 978-0-471-76138-9
  2. 2.0 2.1 J A C Yule and W J Neilsen[sic], "The penetration of light into paper and its effect on halftone reproduction." 1951 TAGA Proceedings, p 65-76.
  3. J. A. S. Viggiano, Models for the Prediction of Color in Graphic Reproduction Technology. ScM thesis, Rochester Institute of Technology, 1987.
  4. "A Guide to Graphic Print Production", Kay Johansson, Peter Lundberg, Robert Ryberg. Ed:WIley ISBN 978-0-471-76138-9 p. 265-269
  5. Pearson, Milton L., "n-value for general conditions." 1981 TAGA Proceedings, p 415-425.
  6. J A C Yule, D J Howe, and J H Altman, TAPPI Journal, vol 50, p 337-344 (1967).
  7. F R Ruckdeschel and O G Hauser, "Yule-Nielsen effect in printing: a physical analysis." Applied Optics, vol 17 nr 21, p 3376-3383 (1978).
  8. D Tollenaar and P A H Ernst, Halftone printing: Proceedings of the Seventh International Conference of Printing Research Institutes. London: Pentech, 1964.
  9. Karl Haller, "Mathematical models for screen dot shapes and for transfer characteristic curves." Advances in Printing Science and Technology: Proceedings of the 15th Conference of Printing Research Institutes, p 85-103. London: Pentech, 1979.
  10. J A Stephen Viggiano, "The GRL dot gain model." 1983 TAGA Proceedings, p 423-439.
  11. Irving Pobboravsky and Milton Pearson, "Computation of dot areas required to match a colorimetrically specified color using the modified Neugebauer equations." 1972 TAGA Proceedings, p 65-77.

External links