Yoneda lemma: Difference between revisions
Jump to navigation
Jump to search
en>APerson |
|||
Line 1: | Line 1: | ||
In [[mathematics]], a '''[[zeta]] function''' is (usually) a [[function (mathematics)|function]] analogous to the original example: the [[Riemann zeta function]] | |||
: <math>\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.</math> | |||
Zeta functions include: | |||
* [[Airy zeta function]], related to the zeros of the [[Airy function]] | |||
* [[Arithmetic zeta function]] | |||
* [[Artin–Mazur zeta function|Artin–Mazur zeta-function]] of a dynamical system | |||
* [[Barnes zeta function]] or Double zeta function | |||
* [[Beurling zeta function]] of Beurling generalized primes | |||
* [[Dedekind zeta function|Dedekind zeta-function]] of a number field | |||
* [[Real analytic Eisenstein series#Epstein zeta function|Epstein zeta-function]] of a quadratic form. | |||
* [[Goss zeta function]] of a function field | |||
* [[Hasse–Weil zeta function|Hasse–Weil zeta-function]] of a variety | |||
* [[Height zeta function]] of a variety | |||
* [[Hurwitz zeta function|Hurwitz zeta-function]] A generalization of the Riemann zeta function | |||
* [[Ihara zeta function|Ihara zeta-function]] of a graph | |||
* [[Igusa zeta function|Igusa zeta-function]] | |||
* [[L-function]], a 'twisted' zeta-function. | |||
* [[Lefschetz zeta function|Lefschetz zeta-function]] of a morphism | |||
* [[Lerch zeta function|Lerch zeta-function]] A generalization of the Riemann zeta function | |||
* [[Local zeta-function]] of a characteristic ''p'' variety | |||
* [[Matsumoto zeta function]] | |||
* [[Minakshisundaram–Pleijel zeta function]] of a Laplacian | |||
* [[Motivic zeta function]] of a motive | |||
* [[Multiple zeta function]] or Mordell–Tornheim zeta-function of several variables | |||
* [[p-adic zeta function]] of a ''p''-adic number | |||
* [[Prime zeta function]] Like the Riemann zeta function, but only summed over primes. | |||
* [[Riemann zeta function]] The archetypal example. | |||
* [[Ruelle zeta function]] | |||
* [[Selberg zeta function|Selberg zeta-function]] of a Riemann surface | |||
* [[Shimizu L-function]] | |||
* [[Shintani zeta function]] | |||
* Subgroup zeta function | |||
* [[Witten zeta function]] of a Lie group | |||
* [[Incidence algebra#Special elements|Zeta function of an incidence algebra]], a function that maps every interval of a poset to the constant value 1. Despite not resembling a holomorphic function, the special case for the poset of integer divisibility is related as a formal Dirichlet series to the Riemann zeta function. | |||
* [[Zeta function (operator)|Zeta function of an operator]] or Spectral zeta function | |||
==See also== | |||
;Other functions called zeta functions, but not analogous to the Riemann zeta function | |||
*[[Jacobi zeta function]] | |||
*[[Weierstrass zeta function]] | |||
;Topics related to zeta functions | |||
*[[Artin conjecture (L-functions)|Artin conjecture]] | |||
*[[Birch and Swinnerton-Dyer conjecture]] | |||
*[[Riemann hypothesis]] and the [[generalized Riemann hypothesis]]. | |||
*[[Selberg class]] S | |||
==External links== | |||
* [http://www.maths.ex.ac.uk/~mwatkins/zeta/directoryofzetafunctions.htm A directory of all known zeta functions] | |||
[[Category:Zeta and L-functions|*]] | |||
[[Category:Mathematics-related lists]] |
Revision as of 16:13, 25 January 2014
In mathematics, a zeta function is (usually) a function analogous to the original example: the Riemann zeta function
Zeta functions include:
- Airy zeta function, related to the zeros of the Airy function
- Arithmetic zeta function
- Artin–Mazur zeta-function of a dynamical system
- Barnes zeta function or Double zeta function
- Beurling zeta function of Beurling generalized primes
- Dedekind zeta-function of a number field
- Epstein zeta-function of a quadratic form.
- Goss zeta function of a function field
- Hasse–Weil zeta-function of a variety
- Height zeta function of a variety
- Hurwitz zeta-function A generalization of the Riemann zeta function
- Ihara zeta-function of a graph
- Igusa zeta-function
- L-function, a 'twisted' zeta-function.
- Lefschetz zeta-function of a morphism
- Lerch zeta-function A generalization of the Riemann zeta function
- Local zeta-function of a characteristic p variety
- Matsumoto zeta function
- Minakshisundaram–Pleijel zeta function of a Laplacian
- Motivic zeta function of a motive
- Multiple zeta function or Mordell–Tornheim zeta-function of several variables
- p-adic zeta function of a p-adic number
- Prime zeta function Like the Riemann zeta function, but only summed over primes.
- Riemann zeta function The archetypal example.
- Ruelle zeta function
- Selberg zeta-function of a Riemann surface
- Shimizu L-function
- Shintani zeta function
- Subgroup zeta function
- Witten zeta function of a Lie group
- Zeta function of an incidence algebra, a function that maps every interval of a poset to the constant value 1. Despite not resembling a holomorphic function, the special case for the poset of integer divisibility is related as a formal Dirichlet series to the Riemann zeta function.
- Zeta function of an operator or Spectral zeta function
See also
- Other functions called zeta functions, but not analogous to the Riemann zeta function
- Topics related to zeta functions
- Artin conjecture
- Birch and Swinnerton-Dyer conjecture
- Riemann hypothesis and the generalized Riemann hypothesis.
- Selberg class S