Equatorial coordinate system: Difference between revisions
en>ShelfSkewed m fix isbn, rm notice |
en>Jc3s5h m Reverted edits by 202.142.107.154 (talk) to last version by 138.234.74.160 |
||
Line 1: | Line 1: | ||
{{Distinguish|Eudoxus of Cyzicus}} | |||
'''Eudoxus of Cnidus''' ({{IPAc-en|ˈ|juː|d|ə|k|s|ə|s}}; {{lang-el|Εὔδοξος ὁ Κνίδιος}}, ''Eúdoxos ho Knídios''; 408–355 BC) was a [[Ancient Greece|Greek]] [[astronomer]], [[mathematician]], scholar and student of [[Plato]]. All of his works are lost, though some fragments are preserved in [[Hipparchus]]' commentary on [[Aratus]]'s poem on [[astronomy]].<ref>Lasserre, François (1966) ''Die Fragmente des Eudoxos von Knidos'' (de Gruyter: Berlin)</ref> [[Theodosius of Bithynia|Theodosius of Bithynia's]] important work, ''[[Sphaerics]]'', may be based on a work of Eudoxus. | |||
== | ==Life== | ||
His name Eudoxus means "honored" or "of good repute" (in [[Greek language|Greek]] εὔδοξος, from ''eu'' "good" and ''doxa'' "opinion, belief, fame"). It is analogous to the Latin name [[wikt:Benedictus|Benedictus]]. | |||
Eudoxus's father Aeschines of [[Cnidus]] loved to watch stars at night. Eudoxus first travelled to [[Taranto|Tarentum]] to study with [[Archytas]], from whom he learned [[mathematics]]. While in Italy, Eudoxus visited Sicily, where he studied medicine with [[Philistion of Locri|Philiston]]. | |||
Around 387 BC, at the age of 23, he traveled with the physician [[Theomedon]], who according to [[Diogenes Laërtius]] some believed was his lover,<ref>Diogenes Laertius; VIII.87</ref> to Athens to study with the followers of [[Socrates]]. He eventually became the pupil of [[Plato]], with whom he studied for several months, but due to a disagreement they had a falling out. Eudoxus was quite poor and could only afford an apartment at the [[Piraeus]]. To attend Plato's lectures, he walked the seven miles (11 km) each direction, each day. Due to his poverty, his friends raised funds sufficient to send him to [[Heliopolis (ancient)|Heliopolis]], Egypt to pursue his study of astronomy and mathematics. He lived there for 16 months. From Egypt, he then traveled north to [[Cyzicus]], located on the south shore of the Sea of Marmara, the [[Propontis]]. He traveled south to the court of [[Mausolus]]. During his travels he gathered many students of his own. | |||
Around 368 BC, Eudoxus returned to Athens with his students. According to some sources, around 367 he assumed headship of the Academy during Plato's period in Syracuse, and taught Aristotle.{{Citation needed|date=September 2010}} He eventually returned to his native Cnidus, where he served in the city assembly. While in Cnidus, he built an observatory and continued writing and lecturing on theology, astronomy and meteorology. He had one son, Aristagoras, and three daughters, Actis, Philtis and Delphis. | |||
In mathematical astronomy, his fame is due to the introduction of the astronomical [[globe]], and his early contributions to understanding the movement of the [[planet]]s. | |||
His work on [[Proportionality (mathematics)|proportions]] shows tremendous insight into [[number]]s; it allows rigorous treatment of continuous quantities and not just [[Integer|whole numbers]] or even [[rational number]]s. When it was revived by [[Niccolo Fontana Tartaglia|Tartaglia]] and others in the 16th century, it became the basis for quantitative work in science for a century, until it was replaced by [[Richard Dedekind]]. | |||
[[Impact crater|Craters]] on [[List of craters on Mars#E|Mars]] and the [[Eudoxus (lunar crater)|Moon]] are named in his honor. An [[algebraic curve]] (the [[Kampyle of Eudoxus]]) is also named after him | |||
: ''a<sup>2</sup>x<sup>4</sup> = b<sup>4</sup>(x<sup>2</sup> + y<sup>2</sup>)''. | |||
==Mathematics<!--Linked from 'Galileo Galilei'-->== | |||
Eudoxus is considered by some to be the greatest of [[Classical Greece|classical Greek]] mathematicians, and in all [[Ancient Greece|antiquity]], second only to [[Archimedes]]. He rigorously developed [[Antiphon (person)|Antiphon]]'s [[method of exhaustion]], a precursor to the [[integral calculus]] which was also used in a masterly way by Archimedes in the following century. In applying the method, Eudoxus proved such mathematical statements as: areas of circles are to one another as the squares of their radii, volumes of spheres are to one another as the cubes of their radii, the volume of a pyramid is one-third the volume of a [[Prism (geometry)|prism]] with the same base and altitude, and the volume of a cone is one-third that of the corresponding cylinder.<ref name="Kline">Morris Kline, ''Mathematical Thought from Ancient to Modern Times'' Oxford University Press, 1972 pp. 48–50</ref> | |||
Eudoxus introduced the idea of non-quantified mathematical [[Magnitude (mathematics)|magnitude]] to describe and work with continuous geometrical entities such as lines, angles, areas and volumes, thereby avoiding the use of [[irrational number]]s. In doing so, he reversed a [[Pythagoreanism|Pythagorean]] emphasis on number and arithmetic, focusing instead on geometrical concepts as the basis of rigorous mathematics. Some Pythagoreans, such as Eudoxus' teacher [[Archytas]], had believed that only arithmetic could provide a basis for proofs. Induced by the need to understand and operate with [[Commensurability (mathematics)|incommensurable]] quantities, Eudoxus established what may have been the first deductive organization of mathematics on the basis of explicit [[axiom]]s. The change in focus by Eudoxus stimulated a divide in mathematics which lasted two thousand years. In combination with a Greek intellectual attitude unconcerned with practical problems, there followed a significant retreat from the development of techniques in arithmetic and algebra.<ref name="Kline"></ref> | |||
The Pythagoreans had discovered that the diagonal of a square does not have a common unit of measurement with the sides of the square; this is the famous discovery that the square root of 2 cannot be expressed as the ratio of two integers. This discovery had heralded the existence of incommensurable quantities beyond the integers and rational fractions, but at the same time it threw into question the idea of measurement and calculations in geometry as a whole. For example, Euclid provides an elaborate proof of the Pythagorean theorem (''Elements'' I.47), by using addition of areas and only much later (''Elements'' VI.31) a simpler proof from similar triangles, which relies on ratios of line segments. | |||
Ancient Greek mathematicians calculated not with quantities and equations as we do today, but instead they used proportionalities to express the relationship between quantities. Thus the ratio of two similar quantities was not just a numerical value, as we think of it today; the ratio of two similar quantities was a primitive relationship between them. | |||
Eudoxus was able to restore confidence in the use of proportionalities by providing an astounding definition for the meaning of the equality between two ratios. This definition of proportion forms the subject of Euclid's Book V. | |||
In Definition 5 of Euclid's Book V we read: | |||
{{Quote|Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order.}} | |||
Let us clarify it by using modern-day notation. If we take four quantities: ''a'', ''b'', ''c'', and ''d'', then the first and second have a ratio <math>a/b</math>; similarly the third and fourth have a ratio <math>c/d</math>. | |||
Now to say that <math>a/b = c/d</math> we do the following: | |||
For any two arbitrary integers, ''m'' and ''n'', form the equimultiples | |||
''m''·''a'' and ''m''·''c'' of the first and third; likewise form the equimultiples ''n''·''b'' and ''n''·''d'' of the second and fourth. | |||
If it happens that ''m''·''a'' > ''n''·''b'', then we must also have ''m''·''c'' > ''n''·''d''. | |||
If it happens that ''m''·''a'' = ''n''·''b'', then we must also have ''m''·''c'' = ''n''·''d''. Finally, if it happens that ''m''·''a'' < ''n''·''b'', then we must also have ''m''·''c'' < ''n''·''d''. | |||
Notice that the definition depends on comparing the similar quantities ''m''·''a'' and ''n''·''b'', and the similar quantities ''m''·''c'' and ''n''·''d'', and does not depend on the existence of a common unit of measuring these quantities. | |||
The complexity of the definition reflects the deep conceptual and methodological innovation involved. It brings to mind the famous [[parallel postulate|fifth postulate of Euclid]] concerning parallels, which is more extensive and complicated in its wording than the other postulates. | |||
The Eudoxian definition of proportionality uses the quantifier, "for every ..." to harness the infinite and the infinitesimal, just as do the modern [[epsilon-delta definition]]s of limit and continuity. | |||
Additionally, the [[Archimedean property]] stated as definition 4 of Euclid's book V is originally due not to Archimedes but to Eudoxus.<ref name="Knopp1951">{{Cite book|last=Knopp|first=Konrad|authorlink=Konrad Knopp|title=Theory and Application of Infinite Series|edition=English 2nd|page=7|year=1951|publisher=Blackie & Son, Ltd.|location=London and Glasgow}}</ref> | |||
==Astronomy== | |||
In [[ancient Greece]], astronomy was a branch of mathematics; astronomers sought to create geometrical models that could imitate the appearances of celestial motions. Identifying the astronomical work of Eudoxus as a separate category is therefore a modern convenience. Some of Eudoxus' astronomical texts whose names have survived include: | |||
* ''Disappearances of the Sun'', possibly on eclipses | |||
* ''Oktaeteris'' (Ὀκταετηρίς), on an eight-year lunisolar cycle of the calendar | |||
* ''Phaenomena'' (Φαινόμενα) and ''Entropon'' (Ἔντροπον), on [[spherical astronomy]], probably based on observations made by Eudoxus in Egypt and Cnidus | |||
* ''On Speeds'', on planetary motions | |||
We are fairly well informed about the contents of ''Phaenomena'', for Eudoxus' prose text was the basis for a poem of the same name by [[Aratus]]. [[Hipparchus]] quoted from the text of Eudoxus in his commentary on Aratus. | |||
===Eudoxan planetary models=== | |||
A general idea of the content of ''On Speeds'' can be gleaned from [[Aristotle|Aristotle's]] ''Metaphysics'' XII, 8, and a commentary by [[Simplicius of Cilicia]] (6th century CE) on ''De caelo'', another work by Aristotle. According to a story reported by Simplicius, Plato posed a question for Greek astronomers: "By the assumption of what uniform and orderly motions can the apparent motions of the planets be accounted for?" (quoted in Lloyd 1970, p. 84). Plato proposed that the seemingly chaotic wandering motions of the planets could be explained by combinations of uniform circular motions centered on a spherical Earth, apparently a novel idea in the 4th century. | |||
In most modern reconstructions of the Eudoxan model, the Moon is assigned three spheres: | |||
* The outermost rotates westward once in 24 hours, explaining rising and setting. | |||
* The second rotates eastward once in a month, explaining the monthly motion of the Moon through the [[zodiac]]. | |||
* The third also completes its revolution in a month, but its axis is tilted at a slightly different angle, explaining motion in latitude (deviation from the [[ecliptic]]), and the motion of the [[lunar node]]s. | |||
The Sun is also assigned three spheres. The second completes its motion in a year instead of a month. The inclusion of a third sphere implies that Eudoxus mistakenly believed that the Sun had motion in latitude. | |||
The five visible planets ([[Venus]], [[Mercury (planet)|Mercury]], [[Mars]], [[Jupiter]], and [[Saturn]]) are assigned four spheres each: | |||
* The outermost explains the daily motion. | |||
* The second explains the planet's motion through the zodiac. | |||
* The third and fourth together explain [[apparent retrograde motion|retrogradation]], when a planet appears to slow down, then briefly reverse its motion through the zodiac. By inclining the axes of the two spheres with respect to each other, and rotating them in opposite directions but with equal periods, Eudoxus could make a point on the inner sphere trace out a figure-eight shape, or [[hippopede]]. | |||
===Importance of Eudoxan system=== | |||
[[Callippus]], a Greek astronomer of the 4th century, added seven spheres to Eudoxus' original 27 (in addition to the planetary spheres, Eudoxus included a sphere for the fixed stars). Aristotle described both systems, but insisted on adding "unrolling" spheres between each set of spheres to cancel the motions of the outer set. Aristotle was concerned about the physical nature of the system; without unrollers, the outer motions would be transferred to the inner planets. | |||
A major flaw in the Eudoxan system is its inability to explain changes in the brightness of planets as seen from Earth. Because the spheres are concentric, planets will always remain at the same distance from Earth. This problem was pointed out in Antiquity by [[Autolycus of Pitane]]. Astronomers responded by introducing the [[deferent and epicycle]], which caused a planet to vary its distance. However, Eudoxus' importance to [[Greek astronomy]] is considerable, as he was the first to attempt a mathematical explanation of the planets. | |||
==Ethics== | |||
[[Aristotle]], in ''[[The Nicomachean Ethics]]''<ref>Largely in Book Ten.</ref> attributes to Eudoxus an argument in favor of [[hedonism]], that is, that pleasure is the ultimate good that activity strives for. According to Aristotle, Eudoxus put forward the following arguments for this position: | |||
# All things, rational and irrational, aim at pleasure; things aim at what they believe to be good; a good indication of what the chief good is would be the thing that most things aim at. | |||
# Similarly, pleasure's opposite − pain − is universally avoided, which provides additional support for the idea that pleasure is universally considered good. | |||
# People don't seek pleasure as a means to something else, but as an end in its own right. | |||
# Any other good that you can think of would be better if pleasure were added to it, and it is only by good that good can be increased. | |||
# Of all of the things that are good, happiness is peculiar for not being praised, which may show that it is the crowning good.<ref>This particular argument is referenced in Book One.</ref> | |||
==See also== | |||
* [[Incommensurable magnitudes]] | |||
* [[Construction of the real numbers#Construction from Z (Eudoxus reals)|''Eudoxus reals'']] (a fairly recently discovered construction of the real numbers, named in his honor) | |||
==Notes== | |||
{{Reflist|2}} | |||
==References== | |||
* {{Cite book| author = Evans, James | title = The History and Practice of Ancient Astronomy | edition = | publisher = Oxford University Press | year = 1998 | isbn = 0-19-509539-1 | oclc = 185509676 }} | |||
* {{Cite book| author = Huxley, GL | title = Eudoxus of Cnidus ''p. 465-7 in:'' the Dictionary of Scientific Biography, volume 4 | edition = | publisher = | year = 1980 | id = }} | |||
* {{Cite book| author = Lloyd, GER | title = Early Greek Science: Thales to Aristotle | edition = | publisher = W.W. Norton | year = 1970 | id = }} | |||
==Further reading== | |||
*{{cite book|last=De Santillana|first=G.|title=Reflections on Men and Ideas|year=1968|publisher=MIT Press|location=Cambridge, MA|chapter=Eudoxus and Plato: A Study in Chronology}} | |||
*{{cite journal|last=Huxley|first=G. L.|title=Eudoxian Topics|journal=Greek, Roman, and Byzantine Studies|year=1963|volume=4|pages=83–96}} | |||
*{{cite book|last=Knorr|first=Wilbur Richard|title=The Ancient tradition of geometric problems|year=1986|publisher=Birkhäuser|location=Boston|isbn=0-8176-3148-8}} | |||
*{{cite journal|last=Knorr|first=Wilbur Richard|title=Archimedes and the Pre-Euclidean Proportion Theory|journal=Archives Intemationales d'histoire des Sciences|year=1978|volume=28|pages=183–244}} | |||
*{{cite book|last=Neugebauer|first=O.|title=A history of ancient mathematical astronomy|year=1975|publisher=Springer-Verlag|location=Berlin|isbn=0-387-06995-X}} | |||
*{{cite book|last=Van der Waerden|first=B. L.|title=Science Awakening|year=1988|publisher=Noordhoff|location=Leiden|edition=5th}} | |||
* Lasserre, François'' (''1966)'' Die Fragmente des Eudoxos von Knidos'' (de Gruyter: Berlin) | |||
* Manitius, C. (1894) ''Hipparchi in Arati et Eudoxi Phaenomena Commentariorum Libri Tres ''(Teubner) | |||
==External links== | |||
* [http://www.youtube.com/watch?v=_SFzDYSqR_4 Working model and complete explanation of the Eudoxus's Spheres] | |||
* [http://www.dioi.org/vols/wf0.pdf Dennis Duke, "Statistical dating of the Phaenomena of Eudoxus", ''DIO'', volume 15] ''see pages 7 to 23'' | |||
* {{ws|[[Diogenes Laërtius]], [[s:Lives of the Eminent Philosophers/Book VIII#Eudoxus|''Life of Eudoxus'']], translated by [[Robert Drew Hicks]] (1925)}} Wikisource | |||
* [http://www.britannica.com/EBchecked/topic/195005/Eudoxus-of-Cnidus Eudoxus of Cnidus] Britannica.com | |||
* [http://www.math.tamu.edu/~don.allen/history/eudoxus/eudoxus.html Eudoxus of Cnidus] Donald Allen, Professor, Texas A&M University | |||
* [http://www.calstatela.edu/faculty/hmendel/Ancient%20Mathematics/Eudoxus/Astronomy/EudoxusHomocentricSpheres.htm Eudoxos of Knidos (Eudoxus of Cnidus): astronomy and homocentric spheres] Henry Mendell, Cal State U, LA | |||
* [http://www.losttrails.com/pages/Hproject/Caria/Cnidus/Cnidus.html Herodotus Project: Extensive B+W photo essay of Cnidus] | |||
* [http://faculty.fullerton.edu/cmcconnell/Planets.html#3 Models of Planetary Motion—Eudoxus], Craig McConnell, Ph.D., Cal State, Fullerton | |||
* {{MacTutor Biography|id=Eudoxus}} | |||
* [http://hsci.cas.ou.edu/images/applets/hippopede.html The Universe According to Eudoxus] ([[Java virtual machine|Java]] applet) | |||
{{Platonists}} | |||
{{Greek astronomy}} | |||
{{Greek mathematics}} | |||
{{Persondata <!-- Metadata: see [[Wikipedia:Persondata]]. --> | |||
| NAME =Eudoxus Of Cnidus | |||
| ALTERNATIVE NAMES = | |||
| SHORT DESCRIPTION = Ancient Greek scholar | |||
| DATE OF BIRTH = | |||
| PLACE OF BIRTH = | |||
| DATE OF DEATH = | |||
| PLACE OF DEATH = | |||
}} | |||
{{DEFAULTSORT:Eudoxus Of Cnidus}} | |||
[[Category:5th-century BC births]] | |||
[[Category:4th-century BC deaths]] | |||
[[Category:4th-century BC Greek people]] | |||
[[Category:4th-century BC philosophers]] | |||
[[Category:Academic philosophers]] | |||
[[Category:Ancient Greek astronomers]] | |||
[[Category:Ancient Greek mathematicians]] | |||
[[Category:Ancient Greek philosophers]] | |||
[[Category:Ancient Greek physicians]] | |||
[[Category:Ancient Cnidians]] | |||
[[Category:Aristotle]] |
Revision as of 18:23, 11 January 2014
Eudoxus of Cnidus (Template:IPAc-en; Fitter (Basic ) Bud from Rosemere, has lots of pursuits that include robotics, property developers service Apartments in singapore singapore and aerobics. Has just concluded a trip to City of Cuzco., Eúdoxos ho Knídios; 408–355 BC) was a Greek astronomer, mathematician, scholar and student of Plato. All of his works are lost, though some fragments are preserved in Hipparchus' commentary on Aratus's poem on astronomy.[1] Theodosius of Bithynia's important work, Sphaerics, may be based on a work of Eudoxus.
Life
His name Eudoxus means "honored" or "of good repute" (in Greek εὔδοξος, from eu "good" and doxa "opinion, belief, fame"). It is analogous to the Latin name Benedictus.
Eudoxus's father Aeschines of Cnidus loved to watch stars at night. Eudoxus first travelled to Tarentum to study with Archytas, from whom he learned mathematics. While in Italy, Eudoxus visited Sicily, where he studied medicine with Philiston.
Around 387 BC, at the age of 23, he traveled with the physician Theomedon, who according to Diogenes Laërtius some believed was his lover,[2] to Athens to study with the followers of Socrates. He eventually became the pupil of Plato, with whom he studied for several months, but due to a disagreement they had a falling out. Eudoxus was quite poor and could only afford an apartment at the Piraeus. To attend Plato's lectures, he walked the seven miles (11 km) each direction, each day. Due to his poverty, his friends raised funds sufficient to send him to Heliopolis, Egypt to pursue his study of astronomy and mathematics. He lived there for 16 months. From Egypt, he then traveled north to Cyzicus, located on the south shore of the Sea of Marmara, the Propontis. He traveled south to the court of Mausolus. During his travels he gathered many students of his own.
Around 368 BC, Eudoxus returned to Athens with his students. According to some sources, around 367 he assumed headship of the Academy during Plato's period in Syracuse, and taught Aristotle.Potter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park. He eventually returned to his native Cnidus, where he served in the city assembly. While in Cnidus, he built an observatory and continued writing and lecturing on theology, astronomy and meteorology. He had one son, Aristagoras, and three daughters, Actis, Philtis and Delphis.
In mathematical astronomy, his fame is due to the introduction of the astronomical globe, and his early contributions to understanding the movement of the planets.
His work on proportions shows tremendous insight into numbers; it allows rigorous treatment of continuous quantities and not just whole numbers or even rational numbers. When it was revived by Tartaglia and others in the 16th century, it became the basis for quantitative work in science for a century, until it was replaced by Richard Dedekind.
Craters on Mars and the Moon are named in his honor. An algebraic curve (the Kampyle of Eudoxus) is also named after him
- a2x4 = b4(x2 + y2).
Mathematics
Eudoxus is considered by some to be the greatest of classical Greek mathematicians, and in all antiquity, second only to Archimedes. He rigorously developed Antiphon's method of exhaustion, a precursor to the integral calculus which was also used in a masterly way by Archimedes in the following century. In applying the method, Eudoxus proved such mathematical statements as: areas of circles are to one another as the squares of their radii, volumes of spheres are to one another as the cubes of their radii, the volume of a pyramid is one-third the volume of a prism with the same base and altitude, and the volume of a cone is one-third that of the corresponding cylinder.[3]
Eudoxus introduced the idea of non-quantified mathematical magnitude to describe and work with continuous geometrical entities such as lines, angles, areas and volumes, thereby avoiding the use of irrational numbers. In doing so, he reversed a Pythagorean emphasis on number and arithmetic, focusing instead on geometrical concepts as the basis of rigorous mathematics. Some Pythagoreans, such as Eudoxus' teacher Archytas, had believed that only arithmetic could provide a basis for proofs. Induced by the need to understand and operate with incommensurable quantities, Eudoxus established what may have been the first deductive organization of mathematics on the basis of explicit axioms. The change in focus by Eudoxus stimulated a divide in mathematics which lasted two thousand years. In combination with a Greek intellectual attitude unconcerned with practical problems, there followed a significant retreat from the development of techniques in arithmetic and algebra.[3]
The Pythagoreans had discovered that the diagonal of a square does not have a common unit of measurement with the sides of the square; this is the famous discovery that the square root of 2 cannot be expressed as the ratio of two integers. This discovery had heralded the existence of incommensurable quantities beyond the integers and rational fractions, but at the same time it threw into question the idea of measurement and calculations in geometry as a whole. For example, Euclid provides an elaborate proof of the Pythagorean theorem (Elements I.47), by using addition of areas and only much later (Elements VI.31) a simpler proof from similar triangles, which relies on ratios of line segments.
Ancient Greek mathematicians calculated not with quantities and equations as we do today, but instead they used proportionalities to express the relationship between quantities. Thus the ratio of two similar quantities was not just a numerical value, as we think of it today; the ratio of two similar quantities was a primitive relationship between them.
Eudoxus was able to restore confidence in the use of proportionalities by providing an astounding definition for the meaning of the equality between two ratios. This definition of proportion forms the subject of Euclid's Book V.
In Definition 5 of Euclid's Book V we read:
31 year-old Systems Analyst Bud from Deep River, spends time with pursuits for instance r/c cars, property developers new condo in singapore singapore and books. Last month just traveled to Orkhon Valley Cultural Landscape.
Let us clarify it by using modern-day notation. If we take four quantities: a, b, c, and d, then the first and second have a ratio ; similarly the third and fourth have a ratio .
Now to say that we do the following: For any two arbitrary integers, m and n, form the equimultiples m·a and m·c of the first and third; likewise form the equimultiples n·b and n·d of the second and fourth.
If it happens that m·a > n·b, then we must also have m·c > n·d. If it happens that m·a = n·b, then we must also have m·c = n·d. Finally, if it happens that m·a < n·b, then we must also have m·c < n·d.
Notice that the definition depends on comparing the similar quantities m·a and n·b, and the similar quantities m·c and n·d, and does not depend on the existence of a common unit of measuring these quantities.
The complexity of the definition reflects the deep conceptual and methodological innovation involved. It brings to mind the famous fifth postulate of Euclid concerning parallels, which is more extensive and complicated in its wording than the other postulates.
The Eudoxian definition of proportionality uses the quantifier, "for every ..." to harness the infinite and the infinitesimal, just as do the modern epsilon-delta definitions of limit and continuity.
Additionally, the Archimedean property stated as definition 4 of Euclid's book V is originally due not to Archimedes but to Eudoxus.[4]
Astronomy
In ancient Greece, astronomy was a branch of mathematics; astronomers sought to create geometrical models that could imitate the appearances of celestial motions. Identifying the astronomical work of Eudoxus as a separate category is therefore a modern convenience. Some of Eudoxus' astronomical texts whose names have survived include:
- Disappearances of the Sun, possibly on eclipses
- Oktaeteris (Ὀκταετηρίς), on an eight-year lunisolar cycle of the calendar
- Phaenomena (Φαινόμενα) and Entropon (Ἔντροπον), on spherical astronomy, probably based on observations made by Eudoxus in Egypt and Cnidus
- On Speeds, on planetary motions
We are fairly well informed about the contents of Phaenomena, for Eudoxus' prose text was the basis for a poem of the same name by Aratus. Hipparchus quoted from the text of Eudoxus in his commentary on Aratus.
Eudoxan planetary models
A general idea of the content of On Speeds can be gleaned from Aristotle's Metaphysics XII, 8, and a commentary by Simplicius of Cilicia (6th century CE) on De caelo, another work by Aristotle. According to a story reported by Simplicius, Plato posed a question for Greek astronomers: "By the assumption of what uniform and orderly motions can the apparent motions of the planets be accounted for?" (quoted in Lloyd 1970, p. 84). Plato proposed that the seemingly chaotic wandering motions of the planets could be explained by combinations of uniform circular motions centered on a spherical Earth, apparently a novel idea in the 4th century.
In most modern reconstructions of the Eudoxan model, the Moon is assigned three spheres:
- The outermost rotates westward once in 24 hours, explaining rising and setting.
- The second rotates eastward once in a month, explaining the monthly motion of the Moon through the zodiac.
- The third also completes its revolution in a month, but its axis is tilted at a slightly different angle, explaining motion in latitude (deviation from the ecliptic), and the motion of the lunar nodes.
The Sun is also assigned three spheres. The second completes its motion in a year instead of a month. The inclusion of a third sphere implies that Eudoxus mistakenly believed that the Sun had motion in latitude.
The five visible planets (Venus, Mercury, Mars, Jupiter, and Saturn) are assigned four spheres each:
- The outermost explains the daily motion.
- The second explains the planet's motion through the zodiac.
- The third and fourth together explain retrogradation, when a planet appears to slow down, then briefly reverse its motion through the zodiac. By inclining the axes of the two spheres with respect to each other, and rotating them in opposite directions but with equal periods, Eudoxus could make a point on the inner sphere trace out a figure-eight shape, or hippopede.
Importance of Eudoxan system
Callippus, a Greek astronomer of the 4th century, added seven spheres to Eudoxus' original 27 (in addition to the planetary spheres, Eudoxus included a sphere for the fixed stars). Aristotle described both systems, but insisted on adding "unrolling" spheres between each set of spheres to cancel the motions of the outer set. Aristotle was concerned about the physical nature of the system; without unrollers, the outer motions would be transferred to the inner planets.
A major flaw in the Eudoxan system is its inability to explain changes in the brightness of planets as seen from Earth. Because the spheres are concentric, planets will always remain at the same distance from Earth. This problem was pointed out in Antiquity by Autolycus of Pitane. Astronomers responded by introducing the deferent and epicycle, which caused a planet to vary its distance. However, Eudoxus' importance to Greek astronomy is considerable, as he was the first to attempt a mathematical explanation of the planets.
Ethics
Aristotle, in The Nicomachean Ethics[5] attributes to Eudoxus an argument in favor of hedonism, that is, that pleasure is the ultimate good that activity strives for. According to Aristotle, Eudoxus put forward the following arguments for this position:
- All things, rational and irrational, aim at pleasure; things aim at what they believe to be good; a good indication of what the chief good is would be the thing that most things aim at.
- Similarly, pleasure's opposite − pain − is universally avoided, which provides additional support for the idea that pleasure is universally considered good.
- People don't seek pleasure as a means to something else, but as an end in its own right.
- Any other good that you can think of would be better if pleasure were added to it, and it is only by good that good can be increased.
- Of all of the things that are good, happiness is peculiar for not being praised, which may show that it is the crowning good.[6]
See also
- Incommensurable magnitudes
- Eudoxus reals (a fairly recently discovered construction of the real numbers, named in his honor)
Notes
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
References
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
Further reading
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - Lasserre, François (1966) Die Fragmente des Eudoxos von Knidos (de Gruyter: Berlin)
- Manitius, C. (1894) Hipparchi in Arati et Eudoxi Phaenomena Commentariorum Libri Tres (Teubner)
External links
- Working model and complete explanation of the Eudoxus's Spheres
- Dennis Duke, "Statistical dating of the Phaenomena of Eudoxus", DIO, volume 15 see pages 7 to 23
- Template:Ws Wikisource
- Eudoxus of Cnidus Britannica.com
- Eudoxus of Cnidus Donald Allen, Professor, Texas A&M University
- Eudoxos of Knidos (Eudoxus of Cnidus): astronomy and homocentric spheres Henry Mendell, Cal State U, LA
- Herodotus Project: Extensive B+W photo essay of Cnidus
- Models of Planetary Motion—Eudoxus, Craig McConnell, Ph.D., Cal State, Fullerton
- Template:MacTutor Biography
- The Universe According to Eudoxus (Java applet)
- ↑ Lasserre, François (1966) Die Fragmente des Eudoxos von Knidos (de Gruyter: Berlin)
- ↑ Diogenes Laertius; VIII.87
- ↑ 3.0 3.1 Morris Kline, Mathematical Thought from Ancient to Modern Times Oxford University Press, 1972 pp. 48–50
- ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ Largely in Book Ten.
- ↑ This particular argument is referenced in Book One.