Nevanlinna theory: Difference between revisions
en>Mct mht mNo edit summary |
en>Pym1507 |
||
Line 1: | Line 1: | ||
In [[mathematics]], the [[infinite set|infinite]] [[cardinal number]]s are represented by the [[Hebrew letter]] <math>\aleph</math> ([[Aleph (letter)|aleph]]) indexed with a subscript that runs over the [[ordinal number]]s (see [[aleph number]]). The second [[Hebrew alphabet|Hebrew letter]] <math>\beth</math> ([[bet (letter)|beth]]) is used in a related way, but does not necessarily index all of the numbers indexed by <math>\aleph</math>. | |||
== Definition == | |||
To define the '''beth numbers''', start by letting | |||
:<math>\beth_0=\aleph_0</math> | |||
be the cardinality of any [[countably infinite]] [[set (mathematics)|set]]; for concreteness, take the set <math>\mathbb{N}</math> of [[natural number]]s to be a typical case. Denote by ''P''(''A'') the [[power set]] of ''A''; i.e., the set of all subsets of ''A''. Then define | |||
:<math>\beth_{\alpha+1}=2^{\beth_{\alpha}},</math> | |||
which is the cardinality of the power set of ''A'' if <math>\beth_{\alpha}</math> is the cardinality of ''A''. | |||
Given this definition, | |||
:<math>\beth_0,\ \beth_1,\ \beth_2,\ \beth_3,\ \dots</math> | |||
are respectively the cardinalities of | |||
:<math>\mathbb{N},\ P(\mathbb{N}),\ P(P(\mathbb{N})),\ P(P(P(\mathbb{N}))),\ \dots.</math> | |||
so that the second beth number <math>\beth_1</math> is equal to <math>\mathfrak c</math>, the [[cardinality of the continuum]], and the third beth number <math>\beth_2</math> is the cardinality of the power set of the continuum. | |||
Because of [[Cantor's theorem]] each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite [[limit ordinal]]s λ the corresponding beth number is defined as the [[supremum]] of the beth numbers for all ordinals strictly smaller than λ: | |||
:<math>\beth_{\lambda}=\sup\{ \beth_{\alpha}:\alpha<\lambda \}.</math> | |||
One can also show that the [[von Neumann universe]]s <math>V_{\omega+\alpha} \!</math> have cardinality <math>\beth_{\alpha} \!</math>. | |||
== Relation to the aleph numbers == | |||
Assuming the [[axiom of choice]], infinite cardinalities are [[total order|linearly ordered]]; no two cardinalities can fail to be comparable. Thus, since by definition no infinite cardinalities are between <math>\aleph_0</math> and <math>\aleph_1</math>, it follows that | |||
:<math>\beth_1 \ge \aleph_1.</math> | |||
Repeating this argument (see [[transfinite induction]]) yields | |||
<math>\beth_\alpha \ge \aleph_\alpha</math> | |||
for all ordinals <math>\alpha</math>. | |||
The [[continuum hypothesis]] is equivalent to | |||
:<math>\beth_1=\aleph_1.</math> | |||
The [[Continuum hypothesis#The generalized continuum hypothesis|generalized continuum hypothesis]] says the sequence of beth numbers thus defined is the same as the sequence of [[aleph number]]s, i.e., | |||
<math>\beth_\alpha = \aleph_\alpha</math> | |||
for all ordinals <math>\alpha</math>. | |||
== Specific cardinals == | |||
=== Beth null === | |||
Since this is defined to be <math>\aleph_0</math> or [[aleph null]] then sets with cardinality <math>\beth_0</math> include: | |||
*the [[natural number]]s '''N''' | |||
*the [[rational number]]s '''Q''' | |||
*the [[algebraic number]]s | |||
*the [[computable number]]s and [[computable set]]s | |||
*the set of [[finite set]]s of [[integer]]s | |||
=== Beth one === | |||
{{main|cardinality of the continuum}} | |||
Sets with cardinality <math>\beth_1</math> include: | |||
*the [[transcendental numbers]] | |||
*the [[irrational number]]s | |||
*the [[real number]]s '''R''' | |||
*the [[complex number]]s '''C''' | |||
*[[Euclidean space]] '''R'''<sup>''n''</sup> | |||
*the [[power set]] of the [[natural number]]s (the set of all subsets of the natural numbers) | |||
*the set of [[sequence]]s of integers (i.e. all functions '''N''' → '''Z''', often denoted '''Z'''<sup>'''N'''</sup>) | |||
*the set of sequences of real numbers, '''R'''<sup>'''N'''</sup> | |||
*the set of all [[continuous function]]s from '''R''' to '''R''' | |||
*the set of finite subsets of real numbers | |||
=== Beth two === | |||
<math>\beth_2</math> (pronounced ''beth two'') is also referred to as '''2<sup>''c''</sup>''' (pronounced ''two to the power of c''). | |||
Sets with cardinality <math>\beth_2</math> include: | |||
* The [[power set]] of the set of [[real number]]s, so it is the number of [[subset]]s of the [[real line]], or the number of sets of real numbers | |||
* The power set of the power set of the set of natural numbers | |||
* The set of all [[function (mathematics)|functions]] from '''R''' to '''R''' ('''R'''<sup>'''R'''</sup>) | |||
* The set of all functions from '''R'''<sup>''m''</sup> to '''R'''<sup>''n''</sup> | |||
* The power set of the set of all functions from the set of natural numbers to itself, so it is the number of sets of sequences of natural numbers | |||
* The [[Stone–Čech compactification]]s of '''R''', '''Q''', and '''N''' | |||
=== Beth omega === | |||
<math>\beth_\omega</math> (pronounced ''beth omega'') is the smallest uncountable [[strong limit cardinal]]. | |||
==Generalization== | |||
The more general symbol <math>\beth_\alpha(\kappa)</math>, for ordinals α and cardinals κ, is occasionally used. It is defined by: | |||
:<math>\beth_0(\kappa)=\kappa,</math> | |||
:<math>\beth_{\alpha+1}(\kappa)=2^{\beth_{\alpha}(\kappa)},</math> | |||
:<math>\beth_{\lambda}(\kappa)=\sup\{ \beth_{\alpha}(\kappa):\alpha<\lambda \}</math> if λ is a limit ordinal. | |||
So <math>\beth_{\alpha}=\beth_{\alpha}(\aleph_0).</math> | |||
In ZF, for any cardinals κ and μ, there is an ordinal α such that: | |||
:<math>\kappa \le \beth_{\alpha}(\mu).</math> | |||
And in ZF, for any cardinal κ and ordinals α and β: | |||
:<math>\beth_{\beta}(\beth_{\alpha}(\kappa)) = \beth_{\alpha+\beta}(\kappa).</math> | |||
Consequently, in [[Zermelo–Fraenkel set theory]] absent [[ur-element]]s with or without the [[axiom of choice]], for any cardinals κ and μ, the equality | |||
:<math>\beth_{\beta}(\kappa) = \beth_{\beta}(\mu)</math> | |||
holds for all sufficiently large ordinals β (that is, there is an ordinal α such that the equality holds for every ordinal β ≥ α). | |||
This also holds in Zermelo–Fraenkel set theory with ur-elements with or without the axiom of choice provided the ur-elements form a set which is equinumerous with a [[pure set]] (a set whose [[transitive set#Transitive closure|transitive closure]] contains no ur-elements). If the axiom of choice holds, then any set of ur-elements is equinumerous with a pure set. | |||
==References== | |||
* T. E. Forster, ''Set Theory with a Universal Set: Exploring an Untyped Universe'', [[Oxford University Press]], 1995 — ''Beth number'' is defined on page 5. | |||
* {{ cite book | last=Bell | first=John Lane | coauthors=Slomson, Alan B. | year=2006 | title=Models and Ultraproducts: An Introduction | edition=reprint of 1974 edition | origyear=1969 | publisher=[[Dover Publications]] | isbn=0-486-44979-3 }} See pages 6 and 204–205 for beth numbers. | |||
* {{cite book | |||
| last = Roitman | |||
| first = Judith | |||
| title = Introduction to Modern Set Theory | |||
| date = 2011 | |||
| publisher = [[Virginia Commonwealth University]] | |||
| isbn = 978-0-9824062-4-3 }} See page 109 for beth numbers. | |||
[[Category:Cardinal numbers]] | |||
[[Category:Infinity]] |
Revision as of 20:46, 24 January 2014
In mathematics, the infinite cardinal numbers are represented by the Hebrew letter (aleph) indexed with a subscript that runs over the ordinal numbers (see aleph number). The second Hebrew letter (beth) is used in a related way, but does not necessarily index all of the numbers indexed by .
Definition
To define the beth numbers, start by letting
be the cardinality of any countably infinite set; for concreteness, take the set of natural numbers to be a typical case. Denote by P(A) the power set of A; i.e., the set of all subsets of A. Then define
which is the cardinality of the power set of A if is the cardinality of A.
Given this definition,
are respectively the cardinalities of
so that the second beth number is equal to , the cardinality of the continuum, and the third beth number is the cardinality of the power set of the continuum.
Because of Cantor's theorem each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite limit ordinals λ the corresponding beth number is defined as the supremum of the beth numbers for all ordinals strictly smaller than λ:
One can also show that the von Neumann universes have cardinality .
Relation to the aleph numbers
Assuming the axiom of choice, infinite cardinalities are linearly ordered; no two cardinalities can fail to be comparable. Thus, since by definition no infinite cardinalities are between and , it follows that
Repeating this argument (see transfinite induction) yields for all ordinals .
The continuum hypothesis is equivalent to
The generalized continuum hypothesis says the sequence of beth numbers thus defined is the same as the sequence of aleph numbers, i.e., for all ordinals .
Specific cardinals
Beth null
Since this is defined to be or aleph null then sets with cardinality include:
- the natural numbers N
- the rational numbers Q
- the algebraic numbers
- the computable numbers and computable sets
- the set of finite sets of integers
Beth one
Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.
Sets with cardinality include:
- the transcendental numbers
- the irrational numbers
- the real numbers R
- the complex numbers C
- Euclidean space Rn
- the power set of the natural numbers (the set of all subsets of the natural numbers)
- the set of sequences of integers (i.e. all functions N → Z, often denoted ZN)
- the set of sequences of real numbers, RN
- the set of all continuous functions from R to R
- the set of finite subsets of real numbers
Beth two
(pronounced beth two) is also referred to as 2c (pronounced two to the power of c).
Sets with cardinality include:
- The power set of the set of real numbers, so it is the number of subsets of the real line, or the number of sets of real numbers
- The power set of the power set of the set of natural numbers
- The set of all functions from R to R (RR)
- The set of all functions from Rm to Rn
- The power set of the set of all functions from the set of natural numbers to itself, so it is the number of sets of sequences of natural numbers
- The Stone–Čech compactifications of R, Q, and N
Beth omega
(pronounced beth omega) is the smallest uncountable strong limit cardinal.
Generalization
The more general symbol , for ordinals α and cardinals κ, is occasionally used. It is defined by:
In ZF, for any cardinals κ and μ, there is an ordinal α such that:
And in ZF, for any cardinal κ and ordinals α and β:
Consequently, in Zermelo–Fraenkel set theory absent ur-elements with or without the axiom of choice, for any cardinals κ and μ, the equality
holds for all sufficiently large ordinals β (that is, there is an ordinal α such that the equality holds for every ordinal β ≥ α).
This also holds in Zermelo–Fraenkel set theory with ur-elements with or without the axiom of choice provided the ur-elements form a set which is equinumerous with a pure set (a set whose transitive closure contains no ur-elements). If the axiom of choice holds, then any set of ur-elements is equinumerous with a pure set.
References
- T. E. Forster, Set Theory with a Universal Set: Exploring an Untyped Universe, Oxford University Press, 1995 — Beth number is defined on page 5.
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 See pages 6 and 204–205 for beth numbers. - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 See page 109 for beth numbers.