Data transformation (statistics): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Jarble
No edit summary
 
en>Brycehughes
m Reverted 1 edit by 86.174.209.37 (talk) to last revision by Talgalili.
Line 1: Line 1:
Claude is her name and she totally digs that name. For many years she's been living in Kansas. What she loves doing is bottle tops collecting and she is attempting to make it a profession. She works as a financial officer and she will not alter it whenever soon.<br><br>my web-site; [http://Discordia.cwsurf.de/index.php?mod=users&action=view&id=61 extended auto warranty]
[[File:Dual cone illustration.svg|right|thumb|A set ''C'' and its dual cone ''C*''.]]
[[File:Polar cone illustration1.svg|right|thumb|A set ''C'' and its polar cone ''C<sup>o</sup>''. The dual cone and the polar cone are symmetric to each other with respect to the origin.]]
 
'''Dual cone''' and '''polar cone''' are closely related concepts in [[convex analysis]], a branch of [[mathematics]].
 
==Dual cone==
The '''dual cone''' ''C*'' of a [[subset]] ''C'' in a [[linear space]] ''X'', e.g. [[Euclidean space]] '''R'''<sup>''n''</sup>, with [[topological]] [[dual space]] ''X*'' is the set
 
:<math>C^* = \left \{y\in X^*: \langle y , x \rangle \geq 0 \quad \forall x\in C  \right \},</math>
 
where ⟨''y'', ''x''⟩ is the duality pairing between ''X'' and ''X*'', i.e. ⟨''y'', ''x''⟩ = ''y''(''x'').
 
''C*'' is always a [[convex cone]], even if ''C'' is neither [[convex set|convex]] nor a [[linear cone|cone]]. 
 
Alternatively, many authors define the dual cone in the context of a real Hilbert space, (such as '''R'''<sup>''n''</sup> equipped with the Euclidean inner product) to be what is sometimes called the ''internal dual cone''.
 
:<math>C^*_\text{internal} := \left \{y\in X: \langle y , x \rangle \geq 0 \quad \forall x\in C  \right \}.</math>
 
Using this latter definition for ''C*'', we have that when ''C'' is a cone, the following properties hold:<ref name="Boyd">{{cite book|title=Convex Optimization | first1=Stephen P. |last1=Boyd |first2=Lieven|last2=Vandenberghe|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83378-3 | url=http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf |format=pdf|accessdate=October 15, 2011|pages=51–53}}</ref>
* A non-zero vector ''y'' is in ''C*'' if and only if both of the following conditions hold:
#''y'' is a [[surface normal|normal]] at the origin of a [[hyperplane]] that [[supporting hyperplane|supports]] ''C''.
#''y'' and ''C'' lie on the same side of that supporting hyperplane.
*''C*'' is [[closed set|closed]] and convex.
*''C''<sub>1</sub> ⊆ ''C''<sub>2</sub> implies <math>C_2^* \subseteq C_1^*</math>.
*If ''C'' has nonempty interior, then ''C*'' is ''pointed'', i.e. ''C*'' contains no line in its entirety.
*If ''C'' is a cone and the closure of ''C'' is pointed, then ''C*'' has nonempty interior.
*''C**'' is the closure of the smallest convex cone containing ''C''.
 
==Self-dual cones==
A cone ''C'' in a vector space ''X'' is said to be ''self-dual'' if ''X'' can be equipped with an [[inner product]] ⟨⋅,⋅⟩ such that the  internal dual cone relative to this inner product is equal to ''C''.<ref>Iochum, Bruno, "Cônes autopolaires et algèbres de Jordan", Springer, 1984.</ref> Those authors who define the dual cone as the internal dual cone in a real Hilbert space usually say that a cone is self-dual if it is equal to its internal dual.  This is slightly different than the above definition, which permits a change of inner product. For instance, the above definition makes a cone in '''R'''<sup>''n''</sup> with ellipsoidal base self-dual, because the inner product can be changed to make the base spherical, and a with spherical base in '''R'''<sup>''n''</sup> is equal to its internal dual.
 
The nonnegative [[orthant]] of '''R'''<sup>''n''</sup> and the space of all [[positive semidefinite matrix|positive semidefinite matrices]] are self-dual, as are the cones with ellipsoidal base (often called "spherical cones", "Lorentz cones", or sometimes "ice-cream cones").  So are all cones in '''R'''<sup>3</sup> whose base is the convex hull of a regular polygon with an odd number of vertices.  A less regular example is the cone in '''R'''<sup>3</sup> whose base is the "house": the convex hull of a square and a point outside the square forming an equilateral triangle (of the appropriate height) with one of the sides of the square.
 
==Polar cone==
[[File:Polar cone illustration.svg|right|thumb|The polar of the closed convex cone ''C'' is the closed convex cone ''C<sup>o</sup>'', and vice-versa.]]
For a set ''C'' in ''X'', the '''polar cone''' of ''C'' is the set<ref name="Rockafellar">{{cite book|author=[[Rockafellar, R. Tyrrell]]|title=Convex Analysis | publisher=Princeton University Press |location=Princeton, NJ|year=1997|origyear=1970|isbn=978-0-691-01586-6|pages=121–122}}</ref>
 
:<math>C^o = \left \{y\in X^*: \langle y , x \rangle \leq 0 \quad \forall x\in C  \right \}.</math>
 
It can be seen that the polar cone is equal to the negative of the dual cone, i.e. ''C<sup>o</sup>'' = −''C*''.
 
For a closed convex cone ''C'' in ''X'', the polar cone is equivalent to the [[polar set]] for ''C''.<ref>{{cite book|last=Aliprantis |first=C.D.|last2=Border |first2=K.C. |title=Infinite Dimensional Analysis: A Hitchhiker's Guide|edition=3|publisher=Springer|year=2007|isbn=978-3-540-32696-0|doi=10.1007/3-540-29587-9|page=215}}</ref>
 
== See also ==
* [[Bipolar theorem]]
* [[Polar set]]
 
==References==
{{Reflist}}
 
*{{cite book
| last      = Goh
| first      = C. J.
| coauthors  = Yang, X.Q.
| title      = Duality in optimization and variational inequalities
| publisher  = London; New York: Taylor & Francis
| year      = 2002
| pages      =
| isbn      = 0-415-27479-6
}}
 
*{{cite book
| last      = Boltyanski
| first      = V. G.
| authorlink= Vladimir Boltyansky
| coauthors  = Martini, H.,  Soltan, P.
| title      = Excursions into combinatorial geometry
| publisher  = New York: Springer
| year      = 1997
| pages      =
| isbn      = 3-540-61341-2
}}
 
*{{cite book
| last      = Ramm
| first      = A.G.
| coauthors  = Shivakumar, P.N.; Strauss,  A.V. editors
| title      = Operator theory and its applications
| publisher  = Providence, R.I.: American Mathematical Society
| year      = 2000
| pages      =
| isbn      = 0-8218-1990-9
}}
 
[[Category:Mathematical optimization]]
[[Category:Convex geometry]]
[[Category:Linear programming]]
[[Category:Convex analysis]]

Revision as of 19:45, 25 September 2013

A set C and its dual cone C*.
A set C and its polar cone Co. The dual cone and the polar cone are symmetric to each other with respect to the origin.

Dual cone and polar cone are closely related concepts in convex analysis, a branch of mathematics.

Dual cone

The dual cone C* of a subset C in a linear space X, e.g. Euclidean space Rn, with topological dual space X* is the set

where ⟨y, x⟩ is the duality pairing between X and X*, i.e. ⟨y, x⟩ = y(x).

C* is always a convex cone, even if C is neither convex nor a cone.

Alternatively, many authors define the dual cone in the context of a real Hilbert space, (such as Rn equipped with the Euclidean inner product) to be what is sometimes called the internal dual cone.

Using this latter definition for C*, we have that when C is a cone, the following properties hold:[1]

  • A non-zero vector y is in C* if and only if both of the following conditions hold:
  1. y is a normal at the origin of a hyperplane that supports C.
  2. y and C lie on the same side of that supporting hyperplane.

Self-dual cones

A cone C in a vector space X is said to be self-dual if X can be equipped with an inner product ⟨⋅,⋅⟩ such that the internal dual cone relative to this inner product is equal to C.[2] Those authors who define the dual cone as the internal dual cone in a real Hilbert space usually say that a cone is self-dual if it is equal to its internal dual. This is slightly different than the above definition, which permits a change of inner product. For instance, the above definition makes a cone in Rn with ellipsoidal base self-dual, because the inner product can be changed to make the base spherical, and a with spherical base in Rn is equal to its internal dual.

The nonnegative orthant of Rn and the space of all positive semidefinite matrices are self-dual, as are the cones with ellipsoidal base (often called "spherical cones", "Lorentz cones", or sometimes "ice-cream cones"). So are all cones in R3 whose base is the convex hull of a regular polygon with an odd number of vertices. A less regular example is the cone in R3 whose base is the "house": the convex hull of a square and a point outside the square forming an equilateral triangle (of the appropriate height) with one of the sides of the square.

Polar cone

The polar of the closed convex cone C is the closed convex cone Co, and vice-versa.

For a set C in X, the polar cone of C is the set[3]

It can be seen that the polar cone is equal to the negative of the dual cone, i.e. Co = −C*.

For a closed convex cone C in X, the polar cone is equivalent to the polar set for C.[4]

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  2. Iochum, Bruno, "Cônes autopolaires et algèbres de Jordan", Springer, 1984.
  3. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  4. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534