Balayage: Difference between revisions
en>David Eppstein stub sort |
en>Addbot m Bot: Removing Orphan Tag - Linked from Harmonic function (Report Errors) |
||
Line 1: | Line 1: | ||
In [[mathematics]] the '''division polynomials''' provide a way to calculate multiples of points on [[elliptic curves]] and to study the fields generated by torsion points. They play a central role in the study of [[counting points on elliptic curves]] in [[Schoof's algorithm]]. | |||
== Definition == | |||
The set of division polynomials is a sequence of [[polynomials]] in <math>\mathbb{Z}[x,y,A,B]</math> with <math>x, y, A, B</math> free variables that is recursively defined by: | |||
::<math>\psi_{0} = 0 </math> | |||
::<math>\psi_{1} = 1</math> | |||
::<math>\psi_{2} = 2y</math> | |||
::<math>\psi_{3} = 3x^{4} + 6Ax^{2} + 12Bx - A^{2}</math> | |||
::<math>\psi_{4} = 4y(x^{6} + 5Ax^{4} + 20Bx^{3} - 5A^{2}x^{2} - 4ABx - 8B^{2} - A^{3}) </math> | |||
::<math>\vdots</math> | |||
::<math>\psi_{2m+1} = \psi_{m+2} \psi_{m}^{ 3} - \psi_{m-1} \psi ^{ 3}_{ m+1} \text{ for } m \geq 2</math> | |||
::<math>\psi_{ 2m} = \left ( \frac { \psi_{m}}{2y} \right ) \cdot ( \psi_{m+2}\psi^{ 2}_{m-1} - \psi_{m-2} \psi ^{ 2}_{m+1}) \text{ for } m \geq 3</math> | |||
The polynomial <math>\psi_n</math> is called the ''n''<sup>th</sup> division polynomial. | |||
== Properties == | |||
*In practice, one sets <math>y^2=x^3+Ax+B</math>, and then <math>\psi_{2m+1}\in\mathbb{Z}[x,A,B]</math> and <math>\psi_{2m}\in 2y\mathbb{Z}[x,A,B]</math>. | |||
* The division polynomials form a generic [[elliptic divisibility sequence]] over the ring <math>\mathbb{Q}[x,y,A,B]/(y^2-x^3-Ax-B)</math>. | |||
*If an [[elliptic curve]] <math>E</math> is given in the [[Weierstrass form]] <math>y^2=x^3+Ax+B</math> over some field <math>K</math>, i.e. <math>A, B\in K</math>, one can use these values of <math>A, B</math> and consider the division polynomials in the [[Imaginary hyperelliptic curve#Coordinate ring|coordinate ring]] of <math>E</math>. The roots of <math>\psi_{2n+1}</math> are the <math>x</math>-coordinates of the points of <math>E[2n+1]\setminus \{O\}</math>, where <math>E[2n+1]</math> is the <math>(2n+1)^{\text{th}}</math> [[torsion subgroup]] of <math>E</math>. Similarly, the roots of <math>\psi_{2n}/y</math> are the <math>x</math>-coordinates of the points of <math>E[2n]\setminus E[2]</math>. | |||
*Given a point <math>P=(x_P,y_P)</math> on the elliptic curve <math>E:y^2=x^3+Ax+B</math> over some field <math>K</math>, we can express the coordinates of the n<sup>th</sup> multiple of <math>P</math> in terms of division polynomials: | |||
::<math>nP= \left ( \frac{\phi_{n}(x)}{\psi_{n}^{2}(x)}, \frac{\omega_{n}(x,y)}{\psi^{3}_{n}(x,y)} \right) = \left( x - \frac {\psi_{n-1} \psi_{n+1}}{\psi^{2}_{n}(x)}, \frac{\psi_{2 n}(x,y)}{2\psi^{4}_{n}(x)} \right)</math> | |||
: where <math>\phi_{n}</math> and <math>\omega_{n}</math> are defined by: | |||
::<math>\phi_{n}=x\psi_{n}^{2} - \psi_{n+1}\psi_{n-1},</math> | |||
::<math>\omega_{n}=\frac{\psi_{n+2}\psi_{n-1}^{2}-\psi_{n-2}\psi_{n+1}^{2}}{4y}.</math> | |||
Using the relation between <math>\psi_{2m}</math> and <math>\psi _{2m + 1}</math>, along with the equation of the curve, the functions <math>\psi_{n}^{2}</math> , <math>\frac{\psi_{2n}}{y}, \psi_{2n + 1}</math> and <math>\phi_{n}</math> are all in <math>K[x]</math>. | |||
Let <math>p>3</math> be prime and let <math>E:y^2=x^3+Ax+B</math> be an [[elliptic curve]] over the finite field <math>\mathbb{F}_p</math>, i.e., <math>A,B \in \mathbb{F}_p</math>. The <math>\ell</math>-torsion group of <math>E</math> over <math>\bar{ \mathbb{F}}_p</math> is [[isomorphic (mathematics)|isomorphic]] to <math>\mathbb{Z}/\ell \times \mathbb{Z}/\ell</math> if <math>\ell\neq p</math>, and to <math>\mathbb{Z}/\ell </math> or <math>\{0\}</math> if <math>\ell=p</math>. Hence the degree of <math>\psi_\ell</math> is equal to either <math>\frac{1}{2}(l^2-1)</math>, <math>\frac{1}{2}(l-1)</math>, or 0. | |||
[[René Schoof]] observed that working modulo the <math>\ell</math>''th'' division polynomial allows one to work with all <math>\ell</math>-torsion points simultaneously. This is heavily used in [[Schoof's algorithm]] for counting points on elliptic curves. | |||
== See also == | |||
*[[Schoof's algorithm]] | |||
== References == | |||
*A. Brown: ''Algorithms for Elliptic Curves over Finite Fields'', EPFL — LMA. Available at http://algo.epfl.ch/handouts/en/andrew.pdf | |||
*A. Enge: ''Elliptic Curves and their Applications to Cryptography: An Introduction''. Kluwer Academic Publishers, Dordrecht, 1999. | |||
*N. Koblitz: ''A Course in Number Theory and Cryptography'', Graduate Texts in Math. No. 114, Springer-Verlag, 1987. Second edition, 1994 | |||
*Müller : ''Die Berechnung der Punktanzahl von elliptischen kurvenüber endlichen Primkörpern''. Master's Thesis. Universität des Saarlandes, Saarbrücken, 1991. | |||
*G. Musiker: ''Schoof's Algorithm for Counting Points on <math>E(\mathbb{F}_q)</math>''. Available at http://www-math.mit.edu/~musiker/schoof.pdf | |||
*Schoof: ''Elliptic Curves over Finite Fields and the Computation of Square Roots mod p''. Math. Comp., 44(170):483–494, 1985. Available at http://www.mat.uniroma2.it/~schoof/ctpts.pdf | |||
*R. Schoof: ''Counting Points on Elliptic Curves over Finite Fields''. J. Theor. Nombres Bordeaux 7:219–254, 1995. Available at http://www.mat.uniroma2.it/~schoof/ctg.pdf | |||
*L. C. Washington: ''Elliptic Curves: Number Theory and Cryptography''. Chapman & Hall/CRC, New York, 2003. | |||
*J. Silverman: ''The Arithmetic of Elliptic Curves'', Springer-Verlag, GTM 106, 1986. | |||
[[Category:Polynomials]] | |||
[[Category:Algebraic curves]] |
Revision as of 12:40, 24 April 2013
In mathematics the division polynomials provide a way to calculate multiples of points on elliptic curves and to study the fields generated by torsion points. They play a central role in the study of counting points on elliptic curves in Schoof's algorithm.
Definition
The set of division polynomials is a sequence of polynomials in with free variables that is recursively defined by:
The polynomial is called the nth division polynomial.
Properties
- In practice, one sets , and then and .
- The division polynomials form a generic elliptic divisibility sequence over the ring .
- If an elliptic curve is given in the Weierstrass form over some field , i.e. , one can use these values of and consider the division polynomials in the coordinate ring of . The roots of are the -coordinates of the points of , where is the torsion subgroup of . Similarly, the roots of are the -coordinates of the points of .
- Given a point on the elliptic curve over some field , we can express the coordinates of the nth multiple of in terms of division polynomials:
Using the relation between and , along with the equation of the curve, the functions , and are all in .
Let be prime and let be an elliptic curve over the finite field , i.e., . The -torsion group of over is isomorphic to if , and to or if . Hence the degree of is equal to either , , or 0.
René Schoof observed that working modulo the th division polynomial allows one to work with all -torsion points simultaneously. This is heavily used in Schoof's algorithm for counting points on elliptic curves.
See also
References
- A. Brown: Algorithms for Elliptic Curves over Finite Fields, EPFL — LMA. Available at http://algo.epfl.ch/handouts/en/andrew.pdf
- A. Enge: Elliptic Curves and their Applications to Cryptography: An Introduction. Kluwer Academic Publishers, Dordrecht, 1999.
- N. Koblitz: A Course in Number Theory and Cryptography, Graduate Texts in Math. No. 114, Springer-Verlag, 1987. Second edition, 1994
- Müller : Die Berechnung der Punktanzahl von elliptischen kurvenüber endlichen Primkörpern. Master's Thesis. Universität des Saarlandes, Saarbrücken, 1991.
- G. Musiker: Schoof's Algorithm for Counting Points on . Available at http://www-math.mit.edu/~musiker/schoof.pdf
- Schoof: Elliptic Curves over Finite Fields and the Computation of Square Roots mod p. Math. Comp., 44(170):483–494, 1985. Available at http://www.mat.uniroma2.it/~schoof/ctpts.pdf
- R. Schoof: Counting Points on Elliptic Curves over Finite Fields. J. Theor. Nombres Bordeaux 7:219–254, 1995. Available at http://www.mat.uniroma2.it/~schoof/ctg.pdf
- L. C. Washington: Elliptic Curves: Number Theory and Cryptography. Chapman & Hall/CRC, New York, 2003.
- J. Silverman: The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, 1986.