Main Page: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
mNo edit summary
Line 1: Line 1:
{{Refimprove|date=September 2014}}
The '''geostrophic wind''' ({{IPAc-en|icon|dʒ|iː|ɵ|ˈ|s|t|r|ɒ|f|ɨ|k}} or {{IPAc-en|dʒ|iː|ɵ|ˈ|s|t|r|oʊ|f|ɨ|k}}) is the [[theoretical]] [[wind]] that would result from an exact balance between the [[Coriolis effect]] and the [[pressure gradient]] force.  This condition is called ''geostrophic balance.'' The geostrophic wind is directed [[Parallel (geometry)|parallel]] to [[isobar (meteorology)|isobar]]s (lines of constant [[Atmospheric pressure|pressure]] at a given height). This balance seldom holds exactly in nature.  The true wind almost always differs from the geostrophic wind due to other forces  such as [[friction]] from the ground. Thus, the actual wind would equal the geostrophic wind only if there were no friction and the isobars were perfectly straight. Despite this, much of the atmosphere outside the [[tropics]] is close to geostrophic flow much of the time and it is a valuable first approximation. Geostrophic flow in air or water is a zero-frequency [[inertial waves|inertial wave]].
'''Doppler temperature''' is the minimum temperature achievable with [[Doppler cooling]], one of the methods of [[laser cooling]].


When a [[photon]] is [[Absorption (optics)|absorbed]] by an atom moving in the opposite direction, its velocity is decreased according to the laws of [[conservation of momentum|momentum conservation]]. Accordingly, when a photon is emitted by this [[Excited state|excited]] atom, there is an extra momentum added to the atom. But since emission is non-directional, this effect "averages" out, and on a time average, there is just a little increase in the atom's momentum due to emission. As the transitions used for Doppler cooling have broad [[natural linewidth]]s <math>\gamma</math>, this sets the lower limit to the temperature of the atoms after cooling to be <ref>{{cite journal|last=Letokhov|first=V.S.|coauthors=V.G. Minogin, B.D. Pavlik|journal=Sov. Phys. JETP|year=1977|volume=45|pages=698|bibcode = 1977JETP...45..698L }}</ref>
==Origin==


<math>T_{Doppler} = h \gamma /2k_{B}</math>
[[Air]] naturally moves from areas of high [[pressure]] to areas of low pressure, due to the [[pressure gradient]] force.  As soon as the air starts to move, however, the [[Coriolis effect|Coriolis "force"]] deflects it.  The {{wict|deflection}} is to the right in the [[northern hemisphere]], and to the left in the [[southern hemisphere]].  As the air moves from the high pressure area, its speed increases, and so does its Coriolis deflection.  The deflection increases until the Coriolis and pressure gradient forces are in geostrophic balance: at this point, the air flow is no longer moving from high to low pressure, but instead moves along an {{wict|isobar}}. (Note that this explanation assumes that the atmosphere starts in a geostrophically unbalanced state and describes how such a state would evolve into a balanced flow. In practice, the flow is nearly always balanced.) The geostrophic balance helps to explain why, in the northern hemisphere, [[low pressure system]]s (or ''[[cyclone]]s'') spin counterclockwise and [[High pressure area|high pressure systems]] (or ''[[anticyclone]]s'') spin clockwise, and the opposite in the southern hemisphere.


where <math>k_{B}</math> is the [[Boltzmann's constant]] and <math>h</math> is [[Planck's constant]]. This is usually much higher than the [[recoil temperature]], which is the temperature associated with the momentum gain from the spontaneous emission of a photon.
==Geostrophic currents==


The term ''Doppler'' arises from the fact that the [[Doppler effect]], which provides a velocity dependence of the absorption rate and thus the light force, is an essential ingredient of the Doppler cooling mechanism.
Flow of ocean water is also largely geostrophic.  Just as multiple weather balloons that measure pressure as a function of height in the atmosphere are used to map the atmospheric pressure field and infer the geostrophic wind, measurements of density as a function of depth in the ocean are used to infer geostrophic currents.  [[satellite altimetry|Satellite altimeters]] are also used to measure sea surface height anomaly, which permits a calculation of the geostrophic current at the surface.


Temperatures well below the Doppler limit have been achieved with various laser cooling methods, including [[Sisyphus cooling]], which allows to approach the lower so-called recoil limit.
==Limitations of the Geostrophic approximation==
 
The effect of friction, between the air and the land, breaks the geostrophic balance.  Friction slows the flow, lessening the effect of the Coriolis force.  As a result, the pressure gradient force has a greater effect and the air still moves from high pressure to low pressure, though with great deflection.  This explains why high pressure system winds radiate out from the center of the system, while low pressure systems have winds that spiral inwards.
 
The geostrophic wind neglects [[friction]]al effects, which is usually a good [[approximation]] for the [[synoptic scale meteorology|synoptic scale]] instantaneous flow in the midlatitude mid-[[troposphere]].<ref>Holton, J.R., 'An Introduction to Dynamic Meteorology', International Geophysical Series, Vol 48 Academic Press.</ref> Although [[ageostrophic]] terms are relatively small, they are essential for the time evolution of the flow and in particular are necessary for the growth and decay of storms. Quasigeostrophic and Semigeostrophic theory are used to model flows in the atmosphere more widely. These theories allow for divergence to take place and for weather systems to then develop.
 
==Governing formula==
Newton's Second law can be written as follows if only the pressure gradient, gravity, and friction act on an air parcel, where the bold symbolizes a vector.
 
<math>{D\boldsymbol{U} \over Dt} = -2\boldsymbol{\Omega} \times \boldsymbol{U} - {1 \over \rho} \nabla p + \boldsymbol{g} + \boldsymbol{F}_r</math>
 
Where F<sub>r</sub> is the friction and ''g'' is the [[standard gravity|acceleration due to gravity]] (9.81 m.s<sup>−2</sup>).
 
Locally this can be expanded in cartesian coordinates, with a positive u representing an eastward direction and a positive v representing a northward direction. Neglecting friction and vertical motion, we have:
 
<math>{Du \over Dt} = -{1 \over \rho}{\partial P \over \partial x} + f \cdot v</math>
 
<math>{Dv \over Dt} = -{1 \over \rho}{\partial P \over \partial y} - f \cdot u</math>
 
<math> 0 = -g -{1 \over \rho}{\partial P \over \partial z}</math>
 
With <math>f = 2 \Omega \sin{\phi}</math> the [[Coriolis effect|Coriolis parameter]] (approximately 10<sup>&minus;4</sup> s<sup>&minus;1</sup>, varying with latitude).
 
Assuming geostrophic balance, the system is stationary and the first two equations become:
 
<math>f \cdot v = {1 \over \rho}{\partial P \over \partial x}</math>
 
<math>f \cdot u =  -{1 \over \rho}{\partial P \over \partial y}</math>
 
By substituting using the third equation above, we have:
 
<math>f \cdot v = g\frac{\partial P / \partial x}{\partial P / \partial z} = g{\partial Z \over \partial x}</math>
 
<math>f \cdot u = -g\frac{\partial P / \partial y}{\partial P / \partial z} = -g{\partial Z \over \partial y}</math>
 
with ''Z'' the height of the constant pressure surface (satisfying <math>{\partial P \over \partial x}dx + {\partial P \over \partial y}dy + {\partial P \over \partial z} dZ = 0 </math>).
 
This leads us to the following result for the geostrophic wind components <math>(u_g,v_g)</math>:
 
: <math> u_g = - {g \over f}  {\partial Z \over \partial y}</math>
 
<!-- extra blank line between two lines of "displayed" [[TeX]], for legiblity -->
 
: <math> v_g = {g \over f}  {\partial Z \over \partial x}</math>
 
The validity of this approximation depends on the local [[Rossby number]]. It is invalid at the equator, because ''f'' is equal to zero there, and therefore generally not used in the [[tropics]].
 
Other variants of the equation are possible; for example, the geostrophic wind vector can be expressed in terms of the gradient of the [[geopotential height]] Φ on a surface of constant pressure:
 
: <math> \overrightarrow{V_g} = {\hat{k} \over f} \times \nabla_p \Phi </math>
 
== See also ==
*[[Geostrophic current]]
*[[Thermal wind]]
*[[Gradient wind]]
*[[Prevailing winds]]


==References==
==References==
{{Reflist}}
{{Reflist}}


{{DEFAULTSORT:Doppler Cooling Limit}}
== External links ==
[[Category:Thermodynamics]]
* [http://atmos.nmsu.edu/education_and_outreach/encyclopedia/geostrophic.htm  Geostrophic approximation]
[[Category:Threshold temperatures]]
* [http://nsidc.org/arcticmet/glossary/geostrophic_winds.html Definition of geostrophic wind]
*[http://atmo.tamu.edu/class/atmo203/tut/windpres/wind8.html Geostrophic wind description]


{{DEFAULTSORT:Geostrophic Wind}}
[[Category:Geophysics]]
[[Category:Fluid dynamics]]
[[Category:Atmospheric dynamics]]


{{Thermodynamics-stub}}
[[ar:رياح جيوستروفيك]]
[[ca:Equilibri geostròfic]]
[[de:Geostrophischer Wind]]
[[es:Viento geostrófico]]
[[fr:Vent géostrophique]]
[[it:Vento geostrofico]]
[[nl:Geostrofische wind]]
[[ja:地衡風]]
[[no:Geostrofisk vind]]
[[nn:Geostrofisk vind]]
[[pl:Wiatr geostroficzny]]
[[pt:Vento geostrófico]]
[[ru:Геострофический ветер]]
[[fi:Geostrofinen tuuli]]
[[sv:Geostrofisk vind]]
[[uk:Геострофічний вітер]]
[[zh:地轉風]]

Revision as of 05:36, 12 August 2014

The geostrophic wind (Template:IPAc-en or Template:IPAc-en) is the theoretical wind that would result from an exact balance between the Coriolis effect and the pressure gradient force. This condition is called geostrophic balance. The geostrophic wind is directed parallel to isobars (lines of constant pressure at a given height). This balance seldom holds exactly in nature. The true wind almost always differs from the geostrophic wind due to other forces such as friction from the ground. Thus, the actual wind would equal the geostrophic wind only if there were no friction and the isobars were perfectly straight. Despite this, much of the atmosphere outside the tropics is close to geostrophic flow much of the time and it is a valuable first approximation. Geostrophic flow in air or water is a zero-frequency inertial wave.

Origin

Air naturally moves from areas of high pressure to areas of low pressure, due to the pressure gradient force. As soon as the air starts to move, however, the Coriolis "force" deflects it. The Template:Wict is to the right in the northern hemisphere, and to the left in the southern hemisphere. As the air moves from the high pressure area, its speed increases, and so does its Coriolis deflection. The deflection increases until the Coriolis and pressure gradient forces are in geostrophic balance: at this point, the air flow is no longer moving from high to low pressure, but instead moves along an Template:Wict. (Note that this explanation assumes that the atmosphere starts in a geostrophically unbalanced state and describes how such a state would evolve into a balanced flow. In practice, the flow is nearly always balanced.) The geostrophic balance helps to explain why, in the northern hemisphere, low pressure systems (or cyclones) spin counterclockwise and high pressure systems (or anticyclones) spin clockwise, and the opposite in the southern hemisphere.

Geostrophic currents

Flow of ocean water is also largely geostrophic. Just as multiple weather balloons that measure pressure as a function of height in the atmosphere are used to map the atmospheric pressure field and infer the geostrophic wind, measurements of density as a function of depth in the ocean are used to infer geostrophic currents. Satellite altimeters are also used to measure sea surface height anomaly, which permits a calculation of the geostrophic current at the surface.

Limitations of the Geostrophic approximation

The effect of friction, between the air and the land, breaks the geostrophic balance. Friction slows the flow, lessening the effect of the Coriolis force. As a result, the pressure gradient force has a greater effect and the air still moves from high pressure to low pressure, though with great deflection. This explains why high pressure system winds radiate out from the center of the system, while low pressure systems have winds that spiral inwards.

The geostrophic wind neglects frictional effects, which is usually a good approximation for the synoptic scale instantaneous flow in the midlatitude mid-troposphere.[1] Although ageostrophic terms are relatively small, they are essential for the time evolution of the flow and in particular are necessary for the growth and decay of storms. Quasigeostrophic and Semigeostrophic theory are used to model flows in the atmosphere more widely. These theories allow for divergence to take place and for weather systems to then develop.

Governing formula

Newton's Second law can be written as follows if only the pressure gradient, gravity, and friction act on an air parcel, where the bold symbolizes a vector.

DUDt=2Ω×U1ρp+g+Fr

Where Fr is the friction and g is the acceleration due to gravity (9.81 m.s−2).

Locally this can be expanded in cartesian coordinates, with a positive u representing an eastward direction and a positive v representing a northward direction. Neglecting friction and vertical motion, we have:

DuDt=1ρPx+fv

DvDt=1ρPyfu

0=g1ρPz

With f=2Ωsinϕ the Coriolis parameter (approximately 10−4 s−1, varying with latitude).

Assuming geostrophic balance, the system is stationary and the first two equations become:

fv=1ρPx

fu=1ρPy

By substituting using the third equation above, we have:

fv=gP/xP/z=gZx

fu=gP/yP/z=gZy

with Z the height of the constant pressure surface (satisfying Pxdx+Pydy+PzdZ=0).

This leads us to the following result for the geostrophic wind components (ug,vg):

ug=gfZy


vg=gfZx

The validity of this approximation depends on the local Rossby number. It is invalid at the equator, because f is equal to zero there, and therefore generally not used in the tropics.

Other variants of the equation are possible; for example, the geostrophic wind vector can be expressed in terms of the gradient of the geopotential height Φ on a surface of constant pressure:

Vg=k^f×pΦ

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

ar:رياح جيوستروفيك ca:Equilibri geostròfic de:Geostrophischer Wind es:Viento geostrófico fr:Vent géostrophique it:Vento geostrofico nl:Geostrofische wind ja:地衡風 no:Geostrofisk vind nn:Geostrofisk vind pl:Wiatr geostroficzny pt:Vento geostrófico ru:Геострофический ветер fi:Geostrofinen tuuli sv:Geostrofisk vind uk:Геострофічний вітер zh:地轉風

  1. Holton, J.R., 'An Introduction to Dynamic Meteorology', International Geophysical Series, Vol 48 Academic Press.