Rabi frequency: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Modify
hyperlink
 
en>Addbot
m Bot: Migrating 2 interwiki links, now provided by Wikidata on d:q2895075
Line 1: Line 1:
Greetings! I am Myrtle Shroyer. To perform baseball is the hobby he will by no means stop doing. I used to be unemployed but now I am a librarian and the salary has been really fulfilling. Puerto Rico is exactly where he and his spouse reside.<br><br>Here is my site :: [http://telekomxchange.com/groups/prevent-infections-before-hand-using-these-tips/ telekomxchange.com]
This is a list of [[formula]]s encountered in [[Riemannian geometry]].
 
==Christoffel symbols, covariant derivative==
 
 
In a smooth [[coordinate chart]], the [[Christoffel symbols]] of the first kind are given by
 
:<math>\Gamma_{kij}=\frac12 \left(
        \frac{\partial}{\partial x^j} g_{ki}
        +\frac{\partial}{\partial x^i} g_{kj}
        -\frac{\partial}{\partial x^k} g_{ij}
        \right)
        =\frac12 \left( g_{ki,j} + g_{kj,i} - g_{ij,k} \right) \,,
</math>
 
and the Christoffel symbols of the second kind by
 
:<math>\begin{align}
        \Gamma^m{}_{ij} &= g^{mk}\Gamma_{kij}\\
        &=\frac12\, g^{mk} \left(
        \frac{\partial}{\partial x^j} g_{ki}
        +\frac{\partial}{\partial x^i} g_{kj}
        -\frac{\partial}{\partial x^k} g_{ij}
        \right)
        =\frac12\, g^{mk} \left( g_{ki,j} + g_{kj,i} - g_{ij,k} \right) \,.
        \end{align}
</math>
 
Here <math>g^{ij}</math> is the [[inverse matrix]] to the metric tensor <math>g_{ij}</math>.  In other words,
 
:<math>
\delta^i{}_j = g^{ik}g_{kj}
</math>
 
and thus
 
:<math>
n = \delta^i{}_i = g^i{}_i = g^{ij}g_{ij}
</math>
 
is the dimension of the [[manifold]].
 
Christoffel symbols satisfy the symmetry relation
 
:<math>
\Gamma^i{}_{jk}=\Gamma^i{}_{kj} \,,
</math>
 
which is equivalent to the torsion-freeness of the [[Levi-Civita connection]].
 
The contracting relations on the Christoffel symbols are given by
 
:<math>\Gamma^i{}_{ki}=\frac{1}{2} g^{im}\frac{\partial g_{im}}{\partial x^k}=\frac{1}{2g} \frac{\partial g}{\partial x^k} = \frac{\partial \log \sqrt{|g|}}{\partial x^k} \ </math>
 
and
 
:<math>g^{k\ell}\Gamma^i{}_{k\ell}=\frac{-1}{\sqrt{|g|}} \;\frac{\partial\left(\sqrt{|g|}\,g^{ik}\right)} {\partial x^k}</math>
 
where |''g''| is the absolute value of the [[determinant]] of the metric tensor <math>g_{ik}\ </math>.  These are useful when dealing with divergences and Laplacians (see below).
 
The [[covariant derivative]] of a [[vector field]] with components <math>v^i</math> is given by:
 
:<math>
v^i {}_{;j}=\nabla_j v^i=\frac{\partial v^i}{\partial x^j}+\Gamma^i{}_{jk}v^k
</math>
 
and similarly the covariant derivative of a <math>(0,1)</math>-[[tensor field]] with components <math>v_i</math> is given by:
 
:<math>
v_{i;j}=\nabla_j v_i=\frac{\partial v_i}{\partial x^j}-\Gamma^k{}_{ij} v_k
</math>
 
For a <math>(2,0)</math>-[[tensor field]] with components <math>v^{ij}</math> this becomes
 
:<math>
v^{ij}{}_{;k}=\nabla_k v^{ij}=\frac{\partial v^{ij}}{\partial x^k} +\Gamma^i{}_{k\ell}v^{\ell j}+\Gamma^j{}_{k\ell}v^{i\ell}
</math>
 
and likewise for tensors with more indices.
 
The covariant derivative of a function (scalar) <math>\phi</math> is just its usual differential:
 
:<math>
\nabla_i \phi=\phi_{;i}=\phi_{,i}=\frac{\partial \phi}{\partial x^i}
</math>
 
Because the [[Levi-Civita connection]] is metric-compatible, the covariant derivatives of metrics vanish,
 
:<math>
\nabla_k g_{ij} = \nabla_k g^{ij} = 0
</math>
 
The [[geodesic]] <math>X(t)</math> starting at the origin with initial speed <math>v^i</math> has Taylor expansion in the chart:
 
:<math>
X(t)^i=tv^i-\frac{t^2}{2}\Gamma^i{}_{jk}v^jv^k+O(t^3)
</math>
 
==Curvature tensors==
===Riemann curvature tensor===
 
If one defines the [[Riemann curvature tensor|curvature operator]] as <math>R(U,V)W=\nabla_U \nabla_V W - \nabla_V \nabla_U W -\nabla_{[U,V]}W</math>
and the coordinate components of the <math>(1,3)</math>-[[Riemann curvature tensor]] by <math>(R(U,V)W)^\ell=R^\ell{}_{ijk}W^iU^jV^k</math>, then these components are given by:
 
:<math>
R^\ell{}_{ijk}=
\frac{\partial}{\partial x^j} \Gamma^\ell{}_{ik}-\frac{\partial}{\partial x^k}\Gamma^\ell{}_{ij}
+\Gamma^\ell{}_{js}\Gamma_{ik}^s-\Gamma^\ell{}_{ks}\Gamma^s{}_{ij}
</math>
 
Lowering indices with <math>R_{\ell ijk}=g_{\ell s}R^s{}_{ijk}</math> one gets
 
:<math>R_{ik\ell m}=\frac{1}{2}\left(
\frac{\partial^2g_{im}}{\partial x^k \partial x^\ell}
+ \frac{\partial^2g_{k\ell}}{\partial x^i \partial x^m}
- \frac{\partial^2g_{i\ell}}{\partial x^k \partial x^m}
- \frac{\partial^2g_{km}}{\partial x^i \partial x^\ell} \right)
+g_{np} \left(
\Gamma^n{}_{k\ell} \Gamma^p{}_{im} -
\Gamma^n{}_{km} \Gamma^p{}_{i\ell} \right).
\ </math>
 
The symmetries of the tensor are
 
:<math>R_{ik\ell m}=R_{\ell mik}\ </math> and <math>R_{ik\ell m}=-R_{ki\ell m}=-R_{ikm\ell}.\ </math>
 
That is, it is symmetric in the exchange of the first and last pair of indices, and antisymmetric in the flipping of a pair.
 
The cyclic permutation sum (sometimes called first Bianchi identity) is
 
:<math>R_{ik\ell m}+R_{imk\ell}+R_{i\ell mk}=0.\ </math>
 
The (second) '''[[Bianchi identity]]''' is
 
:<math>\nabla_m R^n {}_{ik\ell} + \nabla_\ell R^n {}_{imk} + \nabla_k R^n {}_{i\ell m}=0,\ </math>
 
that is,
 
:<math> R^n {}_{ik\ell;m} + R^n {}_{imk;\ell} + R^n {}_{i\ell m;k}=0 \ </math>
 
which amounts to a cyclic permutation sum of the last three indices, leaving the first two fixed.
 
===Ricci and scalar curvatures===
 
Ricci and scalar curvatures are contractions of the Riemann tensor.  They simplify the Riemann tensor, but contain less information.
 
The [[Ricci curvature]] tensor is essentially the unique nontrivial way of contracting the Riemann tensor:
 
:<math>
R_{ij}=R^\ell{}_{i\ell j}=g^{\ell m}R_{i\ell jm}=g^{\ell m}R_{\ell imj}
=\frac{\partial\Gamma^\ell{}_{ij}}{\partial x^\ell} - \frac{\partial\Gamma^\ell{}_{i\ell}}{\partial x^j} + \Gamma^\ell{}_{ij} \Gamma^m{}_{\ell m} - \Gamma^m{}_{i\ell}\Gamma^\ell_{jm}.\
</math>
 
The Ricci tensor <math>R_{ij}</math> is symmetric.
 
By the contracting relations on the Christoffel symbols, we have
 
:<math>
R_{ik}=\frac{\partial\Gamma^\ell{}_{ik}}{\partial x^\ell} - \Gamma^m{}_{i\ell}\Gamma^\ell{}_{km} - \nabla_k\left(\frac{\partial}{\partial x^i}\left(\log\sqrt{|g|}\right)\right).\
</math>
 
The [[scalar curvature]] is the trace of the Ricci curvature,
 
:<math>
R=g^{ij}R_{ij}=g^{ij}g^{\ell m}R_{i\ell jm}
</math>.
 
The "gradient" of the scalar curvature follows from the Bianchi identity ([[Proofs involving Christoffel symbols#Proof 1|proof]]):
 
:<math>\nabla_\ell R^\ell {}_m = {1 \over 2} \nabla_m R, \ </math>
 
that is,
 
:<math> R^\ell {}_{m;\ell} = {1 \over 2} R_{;m}. \ </math>
 
===Einstein tensor===
The [[Einstein tensor]] ''G<sup>ab</sup>'' is defined in terms of the Ricci tensor ''R<sup>ab</sup>'' and the Ricci scalar ''R'',
 
:<math> G^{ab} = R^{ab} - {1 \over 2} g^{ab} R \ </math>
 
where ''g'' is the metric tensor. 
 
The Einstein tensor is symmetric, with a vanishing divergence ([[Proofs involving Christoffel symbols#Proof 2|proof]]) which is due to the Bianchi identity:
 
:<math> \nabla_a G^{ab} = G^{ab} {}_{;a} = 0. \ </math>
 
===Weyl tensor===
The '''[[Weyl tensor]]''' is given by
 
:<math>C_{ik\ell m}=R_{ik\ell m} + \frac{1}{n-2}\left(
- R_{i\ell}g_{km} 
+ R_{im}g_{k\ell}
+ R_{k\ell}g_{im}
- R_{km}g_{i\ell} \right)
+ \frac{1}{(n-1)(n-2)} R \left(
g_{i\ell}g_{km} - g_{im}g_{k\ell} \right),\ </math>
 
where <math>n</math> denotes the dimension of the Riemannian manifold.
 
The Weyl tensor satisfies the first (algebraic) Bianchi identity:
 
:<math>C_{ijkl} + C_{kijl} + C_{jkil} = 0 .</math>
 
The Weyl tensor is a symmetric product of alternating 2-forms,
 
:<math> C_{ijkl} = -C_{jikl} \qquad C_{ijkl} = C_{klij} ,</math>
 
just like the Riemann tensor.  Moreover, taking the trace over any two indices gives zero,
 
:<math> C^i{}_{jki} = 0 </math>
 
The Weyl tensor vanishes (<math>C=0</math>) if and only if a manifold <math>M</math> of dimension <math>n \geq 4</math> is locally conformally flat.  In other words, <math>M</math> can be covered by coordinate systems in which the metric <math>ds^2</math> satisfies
 
:<math>ds^2 = f^2\left(dx_1^2 + dx_2^2 + \ldots dx_n^2\right)</math>
 
This is essentially because <math>C^i{}_{jkl}</math> is invariant under conformal changes.
 
==Gradient, divergence, Laplace–Beltrami operator==
 
The [[gradient#The gradient on manifolds|gradient]] of a function <math>\phi</math> is obtained by raising the index of the differential <math>\partial_i\phi dx^i</math>, whose components are given by:
 
:<math>\nabla^i \phi=\phi^{;i}=g^{ik}\phi_{;k}=g^{ik}\phi_{,k}=g^{ik}\partial_k \phi=g^{ik}\frac{\partial \phi}{\partial x^k}
</math>
 
The [[divergence]] of a vector field with components <math>V^m</math> is
:<math>\nabla_m V^m = \frac{\partial V^m}{\partial x^m} + V^k \frac{\partial \log \sqrt{|g|}}{\partial x^k} = \frac{1}{\sqrt{|g|}} \frac{\partial (V^m\sqrt{|g|})}{\partial x^m}.\ </math>
 
The [[Laplace–Beltrami operator]] acting on a function <math>f</math> is given by the divergence of the gradient:
 
:<math>
\begin{align}
\Delta f &= \nabla_i \nabla^i f
= \frac{1}{\sqrt{|g|}} \frac{\partial }{\partial x^j}\left(g^{jk}\sqrt{|g|}\frac{\partial f}{\partial x^k}\right) \\
&=
g^{jk}\frac{\partial^2 f}{\partial x^j \partial x^k} + \frac{\partial g^{jk}}{\partial x^j} \frac{\partial
f}{\partial x^k} + \frac12 g^{jk}g^{il}\frac{\partial g_{il}}{\partial x^j}\frac{\partial f}{\partial x^k}
= g^{jk}\frac{\partial^2 f}{\partial x^j \partial x^k} - g^{jk}\Gamma^l{}_{jk}\frac{\partial f}{\partial x^l}
\end{align}
</math>
 
The divergence of an [[antisymmetric tensor]] field of type <math>(2,0)</math> simplifies to
 
:<math>\nabla_k A^{ik}= \frac{1}{\sqrt{|g|}} \frac{\partial (A^{ik}\sqrt{|g|})}{\partial x^k}.\ </math>
 
The Hessian of a map <math>\phi: M \rightarrow N </math> is given by
:<math> \left( \nabla \left( d \phi\right) \right) _{ij} ^\gamma= \frac{\partial ^2 \phi ^\gamma}{\partial x^i \partial x^j}- ^M \Gamma  ^k{}_{ij} \frac{\partial \phi ^\gamma}{\partial x^k} + ^N \Gamma ^{\gamma}{}_{\alpha \beta} \frac{\partial \phi ^\alpha}{\partial x^i}\frac{\partial \phi ^\beta}{\partial x^j}.</math>
 
==Kulkarni–Nomizu product==
 
The [[Kulkarni–Nomizu product]] is an important tool for constructing new tensors from existing tensors on a Riemannian manifold.  Let <math>h</math> and <math>k</math> be symmetric covariant 2-tensors.  In coordinates,
 
:<math>h_{ij} = h_{ji} \qquad \qquad k_{ij} = k_{ji} </math>
 
Then we can multiply these in a sense to get a new covariant 4-tensor, which is often denoted <math> h {~\wedge\!\!\!\!\!\!\bigcirc~} k</math>.  The defining formula is
 
<math>\left(h {~\wedge\!\!\!\!\!\!\bigcirc~} k\right)_{ijkl} = h_{ik}k_{jl} + h_{jl}k_{ik} - h_{il}k_{jk} - h_{jk}k_{il}</math>
 
Clearly, the product satisfies
 
:<math>h {~\wedge\!\!\!\!\!\!\bigcirc~} k = k {~\wedge\!\!\!\!\!\!\bigcirc~} h</math>
 
==In an inertial frame==
 
An orthonormal [[inertial frame]] is a coordinate chart such that, at the origin, one has the relations <math>g_{ij}=\delta_{ij}</math> and <math>\Gamma^i{}_{jk}=0</math> (but these may not hold at other points in the frame). These coordinates are also called normal coordinates.
In such a frame, the expression for several operators is simpler. Note that the formulae given below are valid ''at the origin of the frame only''.
 
:<math>R_{ik\ell m}=\frac{1}{2}\left(
\frac{\partial^2g_{im}}{\partial x^k \partial x^\ell}
+ \frac{\partial^2g_{k\ell}}{\partial x^i \partial x^m}
- \frac{\partial^2g_{i\ell}}{\partial x^k \partial x^m}
- \frac{\partial^2g_{km}}{\partial x^i \partial x^\ell} \right)
</math>
 
==Under a conformal change==
 
Let <math>g</math> be a Riemannian metric on a smooth manifold <math>M</math>, and <math>\varphi</math> a smooth real-valued function on <math>M</math>.  Then
 
:<math>\tilde g = e^{2\varphi}g </math>
 
is also a Riemannian metric on <math>M</math>.  We say that <math>\tilde g</math> is conformal to <math>g</math>.  Evidently, conformality of metrics is an equivalence relation.  Here are some formulas for conformal changes in tensors associated with the metric.  (Quantities marked with a tilde will be associated with <math>\tilde g</math>, while those unmarked with such will be associated with <math>g</math>.)
 
:<math>\tilde g_{ij} = e^{2\varphi}g_{ij} </math>
 
:<math>\tilde \Gamma^k{}_{ij} = \Gamma^k{}_{ij}+ \delta^k_i\partial_j\varphi + \delta^k_j\partial_i\varphi-g_{ij}\nabla^k\varphi </math>
 
Note that the difference between the Christoffel symbols of two different metrics always form the components of a tensor.
 
We can also write this in a coordinate-free manner:
 
:<math>\tilde\nabla_{F_* X}F_* Y = F_*\Bigl( \nabla_X Y + X(\varphi)Y + Y(\varphi) X - g(X,Y)\operatorname{grad}\varphi \Bigr)</math>,
 
(where <math>F:M \to N</math> is the conformal map, i.e.: <math>F^* \tilde g = e^{2\varphi} g</math>, and <math>X,Y</math> are vector fields.)
 
:<math>d\tilde V = e^{n\varphi}dV</math>
 
Here <math>dV</math> is the Riemannian volume element.
 
:<math>\tilde R_{ijkl} = e^{2\varphi}\left( R_{ijkl} - \left[ g {~\wedge\!\!\!\!\!\!\bigcirc~} \left( \nabla\partial\varphi - \partial\varphi\partial\varphi + \frac{1}{2}\|\nabla\varphi\|^2g    \right)\right]_{ijkl}  \right)</math>
 
Here <math>{~\wedge\!\!\!\!\!\!\bigcirc~}</math> is the Kulkarni–Nomizu product defined earlier in this article.  The symbol <math>\partial_k</math> denotes partial derivative, while <math>\nabla_k</math> denotes covariant derivative.
 
:<math>\tilde R_{ij} = R_{ij} - (n-2)\left[ \nabla_i\partial_j \varphi - (\partial_i \varphi)(\partial_j \varphi) \right] + \left( \triangle \varphi - (n-2)\|\nabla \varphi\|^2 \right)g_{ij} </math>
 
Beware that here the Laplacian <math>\triangle </math> is minus the trace of the Hessian on functions,
 
:<math>\triangle f = -\nabla^i\partial_i f</math>
 
Thus the operator <math>-\triangle</math> is elliptic because the metric <math>g</math> is Riemannian.
 
:<math>\tilde\triangle f = e^{-2\varphi}\left(\triangle f -(n-2)\nabla^k\varphi\nabla_kf\right)</math>
 
:<math>\tilde R  = e^{-2\varphi}\left(R + 2(n-1)\triangle\varphi - (n-2)(n-1)\|\nabla\varphi\|^2\right) </math>
 
If the dimension <math>n > 2</math>, then this simplifies to
 
:<math>\tilde R = e^{-2\varphi}\left[R + \frac{4(n-1)}{(n-2)}e^{-(n-2)\varphi/2}\triangle\left( e^{(n-2)\varphi/2} \right) \right] </math>
 
:<math>\tilde C^i{}_{jkl} = C^i{}_{jkl}</math>
 
We see that the (3,1) Weyl tensor is invariant under conformal changes.
 
Let <math>\omega</math> be a differential <math>p</math>-form.  Let <math>*</math> be the Hodge star, and <math>\delta</math> the codifferential.  Under a conformal change, these satisfy
 
:<math>\tilde * = e^{(n-2p)\varphi}*</math>
 
:<math>\left[\tilde\delta\omega\right](v_1 , v_2 , \ldots , v_{p-1}) = e^{-2\varphi}\left[  \delta\omega - (n-2p)\omega\left(\nabla\varphi, v_1, v_2, \ldots , v_{p-1}\right) \right]</math>
 
==See also==
 
*[[Liouville equations]]
*[[List of formulas in elementary geometry]]
 
[[Category:Riemannian geometry|formulas]]
[[Category:Mathematics-related lists|Riemannian geometry formulas]]

Revision as of 20:24, 15 March 2013

This is a list of formulas encountered in Riemannian geometry.

Christoffel symbols, covariant derivative

In a smooth coordinate chart, the Christoffel symbols of the first kind are given by

Γkij=12(xjgki+xigkjxkgij)=12(gki,j+gkj,igij,k),

and the Christoffel symbols of the second kind by

Γmij=gmkΓkij=12gmk(xjgki+xigkjxkgij)=12gmk(gki,j+gkj,igij,k).

Here gij is the inverse matrix to the metric tensor gij. In other words,

δij=gikgkj

and thus

n=δii=gii=gijgij

is the dimension of the manifold.

Christoffel symbols satisfy the symmetry relation

Γijk=Γikj,

which is equivalent to the torsion-freeness of the Levi-Civita connection.

The contracting relations on the Christoffel symbols are given by

Γiki=12gimgimxk=12ggxk=log|g|xk

and

gkΓik=1|g|(|g|gik)xk

where |g| is the absolute value of the determinant of the metric tensor gik. These are useful when dealing with divergences and Laplacians (see below).

The covariant derivative of a vector field with components vi is given by:

vi;j=jvi=vixj+Γijkvk

and similarly the covariant derivative of a (0,1)-tensor field with components vi is given by:

vi;j=jvi=vixjΓkijvk

For a (2,0)-tensor field with components vij this becomes

vij;k=kvij=vijxk+Γikvj+Γjkvi

and likewise for tensors with more indices.

The covariant derivative of a function (scalar) ϕ is just its usual differential:

iϕ=ϕ;i=ϕ,i=ϕxi

Because the Levi-Civita connection is metric-compatible, the covariant derivatives of metrics vanish,

kgij=kgij=0

The geodesic X(t) starting at the origin with initial speed vi has Taylor expansion in the chart:

X(t)i=tvit22Γijkvjvk+O(t3)

Curvature tensors

Riemann curvature tensor

If one defines the curvature operator as R(U,V)W=UVWVUW[U,V]W and the coordinate components of the (1,3)-Riemann curvature tensor by (R(U,V)W)=RijkWiUjVk, then these components are given by:

Rijk=xjΓikxkΓij+ΓjsΓiksΓksΓsij

Lowering indices with Rijk=gsRsijk one gets

Rikm=12(2gimxkx+2gkxixm2gixkxm2gkmxix)+gnp(ΓnkΓpimΓnkmΓpi).

The symmetries of the tensor are

Rikm=Rmik and Rikm=Rkim=Rikm.

That is, it is symmetric in the exchange of the first and last pair of indices, and antisymmetric in the flipping of a pair.

The cyclic permutation sum (sometimes called first Bianchi identity) is

Rikm+Rimk+Rimk=0.

The (second) Bianchi identity is

mRnik+Rnimk+kRnim=0,

that is,

Rnik;m+Rnimk;+Rnim;k=0

which amounts to a cyclic permutation sum of the last three indices, leaving the first two fixed.

Ricci and scalar curvatures

Ricci and scalar curvatures are contractions of the Riemann tensor. They simplify the Riemann tensor, but contain less information.

The Ricci curvature tensor is essentially the unique nontrivial way of contracting the Riemann tensor:

Rij=Rij=gmRijm=gmRimj=ΓijxΓixj+ΓijΓmmΓmiΓjm.

The Ricci tensor Rij is symmetric.

By the contracting relations on the Christoffel symbols, we have

Rik=ΓikxΓmiΓkmk(xi(log|g|)).

The scalar curvature is the trace of the Ricci curvature,

R=gijRij=gijgmRijm.

The "gradient" of the scalar curvature follows from the Bianchi identity (proof):

Rm=12mR,

that is,

Rm;=12R;m.

Einstein tensor

The Einstein tensor Gab is defined in terms of the Ricci tensor Rab and the Ricci scalar R,

Gab=Rab12gabR

where g is the metric tensor.

The Einstein tensor is symmetric, with a vanishing divergence (proof) which is due to the Bianchi identity:

aGab=Gab;a=0.

Weyl tensor

The Weyl tensor is given by

Cikm=Rikm+1n2(Rigkm+Rimgk+RkgimRkmgi)+1(n1)(n2)R(gigkmgimgk),

where n denotes the dimension of the Riemannian manifold.

The Weyl tensor satisfies the first (algebraic) Bianchi identity:

Cijkl+Ckijl+Cjkil=0.

The Weyl tensor is a symmetric product of alternating 2-forms,

Cijkl=CjiklCijkl=Cklij,

just like the Riemann tensor. Moreover, taking the trace over any two indices gives zero,

Cijki=0

The Weyl tensor vanishes (C=0) if and only if a manifold M of dimension n4 is locally conformally flat. In other words, M can be covered by coordinate systems in which the metric ds2 satisfies

ds2=f2(dx12+dx22+dxn2)

This is essentially because Cijkl is invariant under conformal changes.

Gradient, divergence, Laplace–Beltrami operator

The gradient of a function ϕ is obtained by raising the index of the differential iϕdxi, whose components are given by:

iϕ=ϕ;i=gikϕ;k=gikϕ,k=gikkϕ=gikϕxk

The divergence of a vector field with components Vm is

mVm=Vmxm+Vklog|g|xk=1|g|(Vm|g|)xm.

The Laplace–Beltrami operator acting on a function f is given by the divergence of the gradient:

Δf=iif=1|g|xj(gjk|g|fxk)=gjk2fxjxk+gjkxjfxk+12gjkgilgilxjfxk=gjk2fxjxkgjkΓljkfxl

The divergence of an antisymmetric tensor field of type (2,0) simplifies to

kAik=1|g|(Aik|g|)xk.

The Hessian of a map ϕ:MN is given by

((dϕ))ijγ=2ϕγxixjMΓkijϕγxk+NΓγαβϕαxiϕβxj.

Kulkarni–Nomizu product

The Kulkarni–Nomizu product is an important tool for constructing new tensors from existing tensors on a Riemannian manifold. Let h and k be symmetric covariant 2-tensors. In coordinates,

hij=hjikij=kji

Then we can multiply these in a sense to get a new covariant 4-tensor, which is often denoted hk. The defining formula is

(hk)ijkl=hikkjl+hjlkikhilkjkhjkkil

Clearly, the product satisfies

hk=kh

In an inertial frame

An orthonormal inertial frame is a coordinate chart such that, at the origin, one has the relations gij=δij and Γijk=0 (but these may not hold at other points in the frame). These coordinates are also called normal coordinates. In such a frame, the expression for several operators is simpler. Note that the formulae given below are valid at the origin of the frame only.

Rikm=12(2gimxkx+2gkxixm2gixkxm2gkmxix)

Under a conformal change

Let g be a Riemannian metric on a smooth manifold M, and φ a smooth real-valued function on M. Then

g~=e2φg

is also a Riemannian metric on M. We say that g~ is conformal to g. Evidently, conformality of metrics is an equivalence relation. Here are some formulas for conformal changes in tensors associated with the metric. (Quantities marked with a tilde will be associated with g~, while those unmarked with such will be associated with g.)

g~ij=e2φgij
Γ~kij=Γkij+δikjφ+δjkiφgijkφ

Note that the difference between the Christoffel symbols of two different metrics always form the components of a tensor.

We can also write this in a coordinate-free manner:

~F*XF*Y=F*(XY+X(φ)Y+Y(φ)Xg(X,Y)gradφ),

(where F:MN is the conformal map, i.e.: F*g~=e2φg, and X,Y are vector fields.)

dV~=enφdV

Here dV is the Riemannian volume element.

R~ijkl=e2φ(Rijkl[g(φφφ+12φ2g)]ijkl)

Here is the Kulkarni–Nomizu product defined earlier in this article. The symbol k denotes partial derivative, while k denotes covariant derivative.

R~ij=Rij(n2)[ijφ(iφ)(jφ)]+(φ(n2)φ2)gij

Beware that here the Laplacian is minus the trace of the Hessian on functions,

f=iif

Thus the operator is elliptic because the metric g is Riemannian.

~f=e2φ(f(n2)kφkf)
R~=e2φ(R+2(n1)φ(n2)(n1)φ2)

If the dimension n>2, then this simplifies to

R~=e2φ[R+4(n1)(n2)e(n2)φ/2(e(n2)φ/2)]
C~ijkl=Cijkl

We see that the (3,1) Weyl tensor is invariant under conformal changes.

Let ω be a differential p-form. Let * be the Hodge star, and δ the codifferential. Under a conformal change, these satisfy

*~=e(n2p)φ*
[δ~ω](v1,v2,,vp1)=e2φ[δω(n2p)ω(φ,v1,v2,,vp1)]

See also