Covariance: Difference between revisions
Line 1: | Line 1: | ||
'''Van der Waerden's theorem''' is a theorem in the branch of [[mathematics]] called [[Ramsey theory]]. Van der Waerden's theorem states that for any given positive [[integer]]s ''r'' and ''k'', there is some number ''N'' such that if the integers {1, 2, ..., ''N''} are colored, each with one of ''r'' different colors, then there are at least ''k'' integers in [[arithmetic progression]] all of the same color. The least such ''N'' is the [[Van der Waerden number]] ''W''(''r'', ''k''). It is named after the Dutch mathematician [[Bartel Leendert van der Waerden|B. L. van der Waerden]].<ref>{{cite journal |authorlink=Bartel Leendert van der Waerden |first=B. L. |last=van der Waerden |title={{lang|de|Beweis einer Baudetschen Vermutung}} |journal=Nieuw. Arch. Wisk. |volume=15 |year=1927 |issue= |pages=212–216 }}</ref> | |||
For example, when ''r'' = 2, you have two colors, say <span style="color:red;">red</span> and <span style="color:blue;">blue</span>. ''W''(2, 3) is bigger than 8, because you can color the integers from {1, ..., 8} like this: | |||
{|class="wikitable" | |||
| 1 | |||
| 2 | |||
| 3 | |||
| 4 | |||
| 5 | |||
| 6 | |||
| 7 | |||
| 8 | |||
|- | |||
| '''<span style="color:blue;">B</span>''' | |||
| '''<span style="color:red;">R</span>''' | |||
| '''<span style="color:red;">R</span>''' | |||
| '''<span style="color:blue;">B</span>''' | |||
| '''<span style="color:blue;">B</span>''' | |||
| '''<span style="color:red;">R</span>''' | |||
| '''<span style="color:red;">R</span>''' | |||
| '''<span style="color:blue;">B</span>''' | |||
|} | |||
and no three integers of the same color form an [[arithmetic progression]]. But you can't add a ninth integer to the end without creating such a progression. If you add a <span style="color:red;">red 9</span>, then the <span style="color:red;">red 3</span>, <span style="color:red;">6</span>, and <span style="color:red;">9</span> are in arithmetic progression. Alternatively, if you add a <span style="color:blue;">blue 9</span>, then the <span style="color:blue;">blue 1</span>, <span style="color:blue;">5</span>, and <span style="color:blue;">9</span> are in arithmetic progression. In fact, there is no way of coloring 1 through 9 without creating such a progression. Therefore, ''W''(2, 3) is 9. | |||
It is an open problem to determine the values of ''W''(''r'', ''k'') for most values of ''r'' and ''k''. The proof of the theorem provides only an upper bound. For the case of ''r'' = 2 and ''k'' = 3, for example, the argument given below shows that it is sufficient to color the integers {1, ..., 325} with two colors to guarantee there will be a single-colored arithmetic progression of length 3. But in fact, the bound of 325 is very loose; the minimum required number of integers is only 9. Any coloring of the integers {1, ..., 9} will have three evenly spaced integers of one color. | |||
For ''r'' = 3 and ''k'' = 3, the bound given by the theorem is 7(2·3<sup>7</sup> + 1)(2·3<sup>7·(2·3<sup>7</sup> + 1)</sup> + 1), or approximately 4.22·10<sup>14616</sup>. But actually, you don't need that many integers to guarantee a single-colored progression of length 3; you only need 27. (And it is possible to color {1, ..., 26} with three colors so that there is no single-colored arithmetic progression of length 3; for example, RRYYRRYBYBBRBRRYRYYBRBBYBY.) | |||
Anyone who can reduce the general upper bound to any 'reasonable' function can win a large cash prize. [[Ronald Graham]] has offered a prize of [[US$]]1000 for showing ''W''(2,''k'')<2<sup>''k''<sup>2</sup></sup>.<ref>{{cite journal |authorlink=Ronald Graham |first=Ron |last=Graham |title=Some of My Favorite Problems in Ramsey Theory |journal=INTEGERS (The Electronic Journal of Combinatorial Number Theory |url=http://www.integers-ejcnt.org/vol7-2.html |volume=7 |issue=2 |year=2007 |pages=#A2 }}</ref> The best upper bound currently known is due to [[Timothy Gowers]],<ref>{{cite journal |authorlink=Timothy Gowers |first=Timothy |last=Gowers |title=A new proof of Szemerédi's theorem |journal=Geom. Funct. Anal. |volume=11 |issue=3 |pages=465–588 |year=2001 |url=http://www.dpmms.cam.ac.uk/~wtg10/papers.html |doi=10.1007/s00039-001-0332-9 }}</ref> who establishes | |||
: <math>W(r,k) \leq 2^{2^{r^{2^{2^{k + 9}}}}},</math> | |||
by first establishing a similar result for [[Szemerédi's theorem]], which is a stronger version of Van der Waerden's theorem. The previously best-known bound was due to [[Saharon Shelah]] and proceeded via first proving a result for the [[Hales–Jewett theorem]], which is another strengthening of Van der Waerden's theorem. | |||
The best lower bound currently known for <math>W(2, k)</math> is that for all positive <math>\varepsilon</math> we have <math>W(2, k) > 2^k/k^\varepsilon</math>, for all sufficiently large <math>k</math>.<ref>{{cite journal |authorlink=Zoltan Szábo|first=Zoltán |last=Szabó |title=An application of Lovász' local lemma -- a new lower bound for the van der Waerden number |journal=Random Struct. Algorithms |volume=1 | issue = 3 |pages=343-360 |year=1990 }}</ref> | |||
== Proof of Van der Waerden's theorem (in a special case) == | |||
The following proof is due to [[Ronald Graham|Ron Graham]] and B.L. Rothschild.<ref name="Graham1974">{{cite journal |authorlink=Ronald Graham |first=R. L. |last=Graham |first2=B. L. |last2=Rothschild |title=A short proof of van der Waerden's theorem on arithmetic progressions |journal=Proc. American Math. Soc. |volume=42 |issue=2 |year=1974 |pages=385–386 |doi=10.1090/S0002-9939-1974-0329917-8 }}</ref> [[A. Ya. Khinchin|Khinchin]]<ref>{{Cite document | |||
| last1 = Khinchin | first1 = A. Ya. | |||
| title = Three Pearls of Number Theory | |||
| publisher = Dover | |||
| location = Mineola, NY | |||
| date = 1998 | |||
| isbn = 978-0-486-40026-6 | |||
| postscript = .}} | |||
</ref> gives a fairly simple proof of the theorem without estimating ''W''(''r'', ''k''). | |||
We will prove the special case mentioned above, that ''W''(2, 3) ≤ 325. Let ''c''(''n'') be a coloring of the integers {1, ..., 325}. We will find three elements of {1, ..., 325} in arithmetic progression that are the same color. | |||
Divide {1, ..., 325} into the 65 blocks {1, ..., 5}, {6, ..., 10}, ... {321, ..., 325}, thus each block is of the form {''b'' ·5 + 1, ..., ''b'' ·5 + 5} for some ''b'' in {0, ..., 64}. Since each integer is colored either red or blue, each block is colored in one of 32 different ways. By the [[pigeonhole principle]], there are two blocks among the first 33 blocks that are colored identically. That is, there are two integers ''b''<sub>1</sub> and ''b''<sub>2</sub>, both in {0,...,32}, such that | |||
: ''c''(''b''<sub>1</sub>·5 + ''k'') = ''c''(''b''<sub>2</sub>·5 + ''k'') | |||
for all ''k'' in {1, ..., 5}. Among the three integers ''b''<sub>1</sub>·5 + 1, ''b''<sub>1</sub>·5 + 2, ''b''<sub>1</sub>·5 + 3, there must be at least two that are the same color. (The [[pigeonhole principle]] again.) Call these ''b''<sub>1</sub>·5 + ''a''<sub>1</sub> and ''b''<sub>1</sub>·5 + ''a''<sub>2</sub>, where the ''a''<sub>''i''</sub> are in {1,2,3} and ''a''<sub>1</sub> < ''a''<sub>2</sub>. Suppose (without loss of generality) that these two integers are both red. (If they are both blue, just exchange 'red' and 'blue' in what follows.) | |||
Let ''a''<sub>3</sub> = 2·''a''<sub>2</sub> − ''a''<sub>1</sub>. If ''b''<sub>1</sub>·5 + ''a''<sub>3</sub> is red, then we have found our arithmetic progression: ''b''<sub>1</sub>·5 + ''a''<sub>''i''</sub> are all red. | |||
Otherwise, ''b''<sub>1</sub>·5 + ''a''<sub>3</sub> is blue. Since ''a''<sub>3</sub> ≤ 5, ''b''<sub>1</sub>·5 + ''a''<sub>3</sub> is in the ''b''<sub>1</sub> block, and since the ''b''<sub>2</sub> block is colored identically, ''b''<sub>2</sub>·5 + ''a''<sub>3</sub> is also blue. | |||
Now let ''b''<sub>3</sub> = 2·''b''<sub>2</sub> − ''b''<sub>1</sub>. Then ''b''<sub>3</sub> ≤ 64. Consider the integer ''b''<sub>3</sub>·5 + ''a''<sub>3</sub>, which must be ≤ 325. What color is it? | |||
If it is red, then ''b''<sub>1</sub>·5 + ''a''<sub>1</sub>, ''b''<sub>2</sub>·5 + ''a''<sub>2</sub>, and ''b''<sub>3</sub>·5 + ''a''<sub>3</sub> form a red arithmetic progression. But if it is blue, then ''b''<sub>1</sub>·5 + ''a''<sub>3</sub>, ''b''<sub>2</sub>·5 + ''a''<sub>3</sub>, and ''b''<sub>3</sub>·5 + ''a''<sub>3</sub> form a blue arithmetic progression. Either way, we are done. | |||
A similar argument can be advanced to show that ''W''(3, 3) ≤ 7(2·3<sup>7</sup>+1)(2·3<sup>7·(2·3<sup>7</sup>+1)</sup>+1). One begins by dividing the integers into 2·3<sup>7·(2·3<sup>7</sup> + 1)</sup> + 1 groups of 7(2·3<sup>7</sup> + 1) integers each; of the first 3<sup>7·(2·3<sup>7</sup> + 1)</sup> + 1 groups, two must be colored identically. | |||
Divide each of these two groups into 2·3<sup>7</sup>+1 subgroups of 7 integers each; of the first 3<sup>7</sup> + 1 subgroups in each group, two of the subgroups must be colored identically. Within each of these identical subgroups, two of the first four integers must be the same color, say red; this implies either a red progression or an element of a different color, say blue, in the same subgroup. | |||
Since we have two identically-colored subgroups, there is a third subgroup, still in the same group that contains an element which, if either red or blue, would complete a red or blue progression, by a construction analogous to the one for ''W''(2, 3). Suppose that this element is yellow. Since there is a group that is colored identically, it must contain copies of the red, blue, and yellow elements we have identified; we can now find a pair of red elements, a pair of blue elements, and a pair of yellow elements that 'focus' on the same integer, so that whatever color it is, it must complete a progression. | |||
The proof for ''W''(2, 3) depends essentially on proving that ''W''(32, 2) ≤ 33. We divide the integers {1,...,325} into 65 'blocks', each of which can be colored in 32 different ways, and then show that two blocks of the first 33 must be the same color, and there is a block coloured the opposite way. Similarly, the proof for ''W''(3, 3) depends on proving that | |||
: <math>W(3^{7(2 \cdot 3^7+1)},2) \leq 3^{7(2 \cdot 3^7+1)}+1.</math> | |||
By a double [[mathematical induction|induction]] on the number of colors and the length of the progression, the theorem is proved in general. | |||
== Proof == | |||
A [[Generalized arithmetic progression|''D-dimensional arithmetic progression'']] consists of | |||
numbers of the form: | |||
::<math> a + i_1 s_1 + i_2 s_2 ... + i_D s_D </math> | |||
where a is the basepoint, the s's are the different step-sizes, and the i's range from 0 to L-1. A d-dimensional AP is ''homogenous'' for some coloring when it is all the same color. | |||
A ''D-dimensional arithmetic progression with benefits'' is all numbers of the form above, but where you add on some of the "boundary" of the arithmetic progression, i.e. some of the indices i's can be equal to L. The sides you tack on are ones where the first k i's are equal to L, and the remaining i's are less than L. | |||
The boundaries of a D-dimensional AP with benefits are these additional arithmetic progressions of dimension d-1,d-2,d-3,d-4, down to 0. The 0 dimensional arithmetic progression is the single point at index value (L,L,L,L...,L). A D-dimensional AP with benefits is ''homogenous'' when each of the boundaries are individually homogenous, but different boundaries do not have to necessarily have the same color. | |||
Next define the quantity MinN(L, D, N) to be the least integer so | |||
that any assignment of N colors to an interval of length MinN or more | |||
necessarily contains a homogenous D-dimensional arithmetical progression with benefits. | |||
The goal is to bound the size of MinN. Note that MinN(L,1,N) is an upper bound for Van-Der-Waerden's | |||
number. There are two inductions steps, as follows: | |||
1. Assume MinN is known for a given lengths L for all dimensions of arithmetic progressions with benefits up to D. This formula gives a bound on MinN when you increase the dimension to D+1: | |||
let <math> M = {\mathrm MinN}(L,D,n)</math> | |||
::<math> {\mathrm MinN}(L, D+1 , n) \le M*{\mathrm MinN}(L,1,n^M)</math> | |||
Proof: | |||
First, if you have an n-coloring of the interval 1...I, you can define a ''block coloring'' of k-size | |||
blocks. Just consider each sequence of k colors in each k block to define a unique color. Call this ''k-blocking'' an n-coloring. k-blocking an n coloring of length l produces an n^k coloring of length l/k. | |||
So given a n-coloring of an interval I of size M*MinN(L,1,n^M)) you can M-block it into an n^M coloring | |||
of length MinN(L,1,n^M). But that means, by the definition of MinN, that you can find a 1-dimensional arithmetic sequence (with benefits) of length L in the block coloring, which is a sequence of blocks equally spaced, which are all the same block-color, i.e. you have a bunch of blocks of length M in the original sequence, which are equally spaced, which have exactly the same sequence of colors inside. | |||
Now, by the definition of M, you can find a d-dimensional arithmetic sequence with benefits in any one of these blocks, and since all of the blocks have the same sequence of colors, the same d-dimensional AP with benefits appears in all of the blocks, just by translating it from block to block. This is the definition of a d+1 dimensional arithmetic progression, so you have a homogenous d+1 dimensional AP. The new stride parameter s_{D+1} is defined to be the distance between the blocks. | |||
But you need benefits. The boundaries you get now are all old boundaries, plus their translations into identically colored blocks, because i_{D+1} is always less than L. The only boundary which is not like this is the 0 dimensional point when <math>i_1=i_2=...=i_{D+1}=L</math>. This is a single point, and is automatically homogenous. | |||
2. Assume MinN is known for one value of L and all possible dimensions D. Then you can bound MinN for length L+1. | |||
::<math>{\mathrm MinN}(L+1,D,n) \le 2{\mathrm MinN}(L,n,n)</math> | |||
proof: | |||
Given an n-coloring of an interval of size MinN(L,n,n), by definition, you can find an arithmetic sequence with benefits of dimension n of length L. But now, the number of "benefit" boundaries is equal to the number of colors, so one of the homogenous boundaries, say of dimension k, has to have the same color as another one of the homogenous benefit boundaries, say the one of dimension p<k. This allows a length L+1 arithmetic sequence (of dimension 1) to be constructed, by going along a line inside the k-dimensional boundary which ends right on the p-dimensional boundary, and including the terminal point in the p-dimensional boundary. In formulas: | |||
if | |||
::<math> a+ L s_1 +L s_2... + L s_{D-k}</math> has the same color as | |||
::<math> a + L s_1 +L s_2 ... +L s_{D-p}</math> | |||
then | |||
::<math> a + L*(s_1 ... +s_{D-k}) + u *(s_{D-k+1} ... +s_p) </math> have the same color | |||
::<math> u = 0,1,2,...,L-1,L </math> i.e. u makes a sequence of length L+1. | |||
This constructs a sequence of dimension 1, and the "benefits" are automatic, just add on another point of whatever color. To include this boundary point, one has to make the interval longer by the maximum possible value of the stride, which is certainly less than the interval size. So doubling the interval size will definitely work, and this is the reason for the factor of two. This completes the induction on L. | |||
Base case: MinN(1,d,n)=1, i.e. if you want a length 1 homogenous d-dimensional arithmetic sequence, with or without benefits, you have nothing to do. So this forms the base of the induction. The VanDerWaerden theorem itself is the assertion that MinN(L,1,N) is finite, and it follows from the base case and the induction steps.<ref name="Graham1974" /> | |||
==See also== | |||
* [[Van der Waerden number]]s for all known values for ''W''(''n'',''r'') and the best-known bounds for unknown values | |||
==References== | |||
{{reflist}} | |||
==External links== | |||
* [http://www.math.uga.edu/~lyall/REU/ramsey.pdf Proof of Van der Waerden's theorem] | |||
[[Category:Ramsey theory]] | |||
[[Category:Theorems in discrete mathematics]] | |||
[[Category:Articles containing proofs]] |
Revision as of 03:04, 15 December 2013
Van der Waerden's theorem is a theorem in the branch of mathematics called Ramsey theory. Van der Waerden's theorem states that for any given positive integers r and k, there is some number N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The least such N is the Van der Waerden number W(r, k). It is named after the Dutch mathematician B. L. van der Waerden.[1]
For example, when r = 2, you have two colors, say red and blue. W(2, 3) is bigger than 8, because you can color the integers from {1, ..., 8} like this:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
B | R | R | B | B | R | R | B |
and no three integers of the same color form an arithmetic progression. But you can't add a ninth integer to the end without creating such a progression. If you add a red 9, then the red 3, 6, and 9 are in arithmetic progression. Alternatively, if you add a blue 9, then the blue 1, 5, and 9 are in arithmetic progression. In fact, there is no way of coloring 1 through 9 without creating such a progression. Therefore, W(2, 3) is 9.
It is an open problem to determine the values of W(r, k) for most values of r and k. The proof of the theorem provides only an upper bound. For the case of r = 2 and k = 3, for example, the argument given below shows that it is sufficient to color the integers {1, ..., 325} with two colors to guarantee there will be a single-colored arithmetic progression of length 3. But in fact, the bound of 325 is very loose; the minimum required number of integers is only 9. Any coloring of the integers {1, ..., 9} will have three evenly spaced integers of one color.
For r = 3 and k = 3, the bound given by the theorem is 7(2·37 + 1)(2·37·(2·37 + 1) + 1), or approximately 4.22·1014616. But actually, you don't need that many integers to guarantee a single-colored progression of length 3; you only need 27. (And it is possible to color {1, ..., 26} with three colors so that there is no single-colored arithmetic progression of length 3; for example, RRYYRRYBYBBRBRRYRYYBRBBYBY.)
Anyone who can reduce the general upper bound to any 'reasonable' function can win a large cash prize. Ronald Graham has offered a prize of US$1000 for showing W(2,k)<2k2.[2] The best upper bound currently known is due to Timothy Gowers,[3] who establishes
by first establishing a similar result for Szemerédi's theorem, which is a stronger version of Van der Waerden's theorem. The previously best-known bound was due to Saharon Shelah and proceeded via first proving a result for the Hales–Jewett theorem, which is another strengthening of Van der Waerden's theorem.
The best lower bound currently known for is that for all positive we have , for all sufficiently large .[4]
Proof of Van der Waerden's theorem (in a special case)
The following proof is due to Ron Graham and B.L. Rothschild.[5] Khinchin[6] gives a fairly simple proof of the theorem without estimating W(r, k).
We will prove the special case mentioned above, that W(2, 3) ≤ 325. Let c(n) be a coloring of the integers {1, ..., 325}. We will find three elements of {1, ..., 325} in arithmetic progression that are the same color.
Divide {1, ..., 325} into the 65 blocks {1, ..., 5}, {6, ..., 10}, ... {321, ..., 325}, thus each block is of the form {b ·5 + 1, ..., b ·5 + 5} for some b in {0, ..., 64}. Since each integer is colored either red or blue, each block is colored in one of 32 different ways. By the pigeonhole principle, there are two blocks among the first 33 blocks that are colored identically. That is, there are two integers b1 and b2, both in {0,...,32}, such that
- c(b1·5 + k) = c(b2·5 + k)
for all k in {1, ..., 5}. Among the three integers b1·5 + 1, b1·5 + 2, b1·5 + 3, there must be at least two that are the same color. (The pigeonhole principle again.) Call these b1·5 + a1 and b1·5 + a2, where the ai are in {1,2,3} and a1 < a2. Suppose (without loss of generality) that these two integers are both red. (If they are both blue, just exchange 'red' and 'blue' in what follows.)
Let a3 = 2·a2 − a1. If b1·5 + a3 is red, then we have found our arithmetic progression: b1·5 + ai are all red.
Otherwise, b1·5 + a3 is blue. Since a3 ≤ 5, b1·5 + a3 is in the b1 block, and since the b2 block is colored identically, b2·5 + a3 is also blue.
Now let b3 = 2·b2 − b1. Then b3 ≤ 64. Consider the integer b3·5 + a3, which must be ≤ 325. What color is it?
If it is red, then b1·5 + a1, b2·5 + a2, and b3·5 + a3 form a red arithmetic progression. But if it is blue, then b1·5 + a3, b2·5 + a3, and b3·5 + a3 form a blue arithmetic progression. Either way, we are done.
A similar argument can be advanced to show that W(3, 3) ≤ 7(2·37+1)(2·37·(2·37+1)+1). One begins by dividing the integers into 2·37·(2·37 + 1) + 1 groups of 7(2·37 + 1) integers each; of the first 37·(2·37 + 1) + 1 groups, two must be colored identically.
Divide each of these two groups into 2·37+1 subgroups of 7 integers each; of the first 37 + 1 subgroups in each group, two of the subgroups must be colored identically. Within each of these identical subgroups, two of the first four integers must be the same color, say red; this implies either a red progression or an element of a different color, say blue, in the same subgroup.
Since we have two identically-colored subgroups, there is a third subgroup, still in the same group that contains an element which, if either red or blue, would complete a red or blue progression, by a construction analogous to the one for W(2, 3). Suppose that this element is yellow. Since there is a group that is colored identically, it must contain copies of the red, blue, and yellow elements we have identified; we can now find a pair of red elements, a pair of blue elements, and a pair of yellow elements that 'focus' on the same integer, so that whatever color it is, it must complete a progression.
The proof for W(2, 3) depends essentially on proving that W(32, 2) ≤ 33. We divide the integers {1,...,325} into 65 'blocks', each of which can be colored in 32 different ways, and then show that two blocks of the first 33 must be the same color, and there is a block coloured the opposite way. Similarly, the proof for W(3, 3) depends on proving that
By a double induction on the number of colors and the length of the progression, the theorem is proved in general.
Proof
A D-dimensional arithmetic progression consists of numbers of the form:
where a is the basepoint, the s's are the different step-sizes, and the i's range from 0 to L-1. A d-dimensional AP is homogenous for some coloring when it is all the same color.
A D-dimensional arithmetic progression with benefits is all numbers of the form above, but where you add on some of the "boundary" of the arithmetic progression, i.e. some of the indices i's can be equal to L. The sides you tack on are ones where the first k i's are equal to L, and the remaining i's are less than L.
The boundaries of a D-dimensional AP with benefits are these additional arithmetic progressions of dimension d-1,d-2,d-3,d-4, down to 0. The 0 dimensional arithmetic progression is the single point at index value (L,L,L,L...,L). A D-dimensional AP with benefits is homogenous when each of the boundaries are individually homogenous, but different boundaries do not have to necessarily have the same color.
Next define the quantity MinN(L, D, N) to be the least integer so that any assignment of N colors to an interval of length MinN or more necessarily contains a homogenous D-dimensional arithmetical progression with benefits.
The goal is to bound the size of MinN. Note that MinN(L,1,N) is an upper bound for Van-Der-Waerden's number. There are two inductions steps, as follows:
1. Assume MinN is known for a given lengths L for all dimensions of arithmetic progressions with benefits up to D. This formula gives a bound on MinN when you increase the dimension to D+1:
Proof: First, if you have an n-coloring of the interval 1...I, you can define a block coloring of k-size blocks. Just consider each sequence of k colors in each k block to define a unique color. Call this k-blocking an n-coloring. k-blocking an n coloring of length l produces an n^k coloring of length l/k.
So given a n-coloring of an interval I of size M*MinN(L,1,n^M)) you can M-block it into an n^M coloring of length MinN(L,1,n^M). But that means, by the definition of MinN, that you can find a 1-dimensional arithmetic sequence (with benefits) of length L in the block coloring, which is a sequence of blocks equally spaced, which are all the same block-color, i.e. you have a bunch of blocks of length M in the original sequence, which are equally spaced, which have exactly the same sequence of colors inside.
Now, by the definition of M, you can find a d-dimensional arithmetic sequence with benefits in any one of these blocks, and since all of the blocks have the same sequence of colors, the same d-dimensional AP with benefits appears in all of the blocks, just by translating it from block to block. This is the definition of a d+1 dimensional arithmetic progression, so you have a homogenous d+1 dimensional AP. The new stride parameter s_{D+1} is defined to be the distance between the blocks.
But you need benefits. The boundaries you get now are all old boundaries, plus their translations into identically colored blocks, because i_{D+1} is always less than L. The only boundary which is not like this is the 0 dimensional point when . This is a single point, and is automatically homogenous.
2. Assume MinN is known for one value of L and all possible dimensions D. Then you can bound MinN for length L+1.
proof: Given an n-coloring of an interval of size MinN(L,n,n), by definition, you can find an arithmetic sequence with benefits of dimension n of length L. But now, the number of "benefit" boundaries is equal to the number of colors, so one of the homogenous boundaries, say of dimension k, has to have the same color as another one of the homogenous benefit boundaries, say the one of dimension p<k. This allows a length L+1 arithmetic sequence (of dimension 1) to be constructed, by going along a line inside the k-dimensional boundary which ends right on the p-dimensional boundary, and including the terminal point in the p-dimensional boundary. In formulas:
if
then
This constructs a sequence of dimension 1, and the "benefits" are automatic, just add on another point of whatever color. To include this boundary point, one has to make the interval longer by the maximum possible value of the stride, which is certainly less than the interval size. So doubling the interval size will definitely work, and this is the reason for the factor of two. This completes the induction on L.
Base case: MinN(1,d,n)=1, i.e. if you want a length 1 homogenous d-dimensional arithmetic sequence, with or without benefits, you have nothing to do. So this forms the base of the induction. The VanDerWaerden theorem itself is the assertion that MinN(L,1,N) is finite, and it follows from the base case and the induction steps.[5]
See also
- Van der Waerden numbers for all known values for W(n,r) and the best-known bounds for unknown values
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
External links
- ↑ One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - ↑ One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - ↑ One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - ↑ One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - ↑ 5.0 5.1 One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - ↑ Template:Cite document