Thyristor controlled reactor: Difference between revisions
en>ChrisGualtieri m →Harmonics: Typo fixing, typos fixed: etc) → etc.) using AWB |
en>Ski Messiah |
||
Line 1: | Line 1: | ||
In [[mathematics]], for a [[sequence]] of complex numbers ''a''<sub>1</sub>, ''a''<sub>2</sub>, ''a''<sub>3</sub>, ... the '''infinite product''' | |||
:<math> | |||
\prod_{n=1}^{\infty} a_n = a_1 \; a_2 \; a_3 \cdots | |||
</math> | |||
is defined to be the [[limit of a sequence|limit]] of the partial products ''a''<sub>1</sub>''a''<sub>2</sub>...''a''<sub>''n''</sub> as ''n'' increases without bound. The product is said to ''[[Limit of a sequence|converge]]'' when the limit exists and is not zero. Otherwise the product is said to ''diverge''. A limit of zero is treated specially in order to obtain results analogous to those for [[Infinite series|infinite sums]]. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here. If the product converges, then the limit of the sequence ''a''<sub>''n''</sub> as ''n'' increases without bound must be 1, while the converse is in general not true. | |||
The best known examples of infinite products are probably some of the formulae for [[pi|π]], such as the following two products, respectively by [[Viète]] ([[Viète's formula]], the first published infinite product in mathematics) and [[John Wallis]] ([[Wallis product]]): | |||
:<math>\frac{2}{\pi} = \frac{ \sqrt{2} }{ 2 } \cdot \frac{ \sqrt{2 + \sqrt{2}} }{ 2 } \cdot \frac{ \sqrt{2 + \sqrt{2 + \sqrt{2}}} }{ 2 } \cdots</math> | |||
:<math>\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \prod_{n=1}^{\infty} \left( \frac{ 4 \cdot n^2 }{ 4 \cdot n^2 - 1 } \right). </math> | |||
== Convergence criteria == | |||
The product of positive real numbers | |||
:<math>\prod_{n=1}^{\infty} a_n</math> | |||
converges if and only if the sum | |||
:<math>\sum_{n=1}^{\infty} \log a_n</math> | |||
converges. This allows the translation of convergence criteria for infinite sums into convergence criteria for infinite products. The same criterion applies to products of arbitrary complex numbers (including negative reals) if log is understood as a fixed [[Complex logarithm#Branches of the complex logarithm|branch of logarithm]] which satisfies log(1) = 0, with the proviso that the infinite product diverges when infinitely many ''a<sub>n</sub>'' fall outside the domain of log, whereas finitely many such ''a<sub>n</sub>'' can be ignored in the sum. | |||
For products of reals in which each <math>a_n\ge1</math>, written as, for instance, <math>a_n=1+p_n</math>, | |||
where <math>p_n\ge 0</math>, the bounds | |||
:<math>1+\sum_{n=1}^{N} p_n \le \prod_{n=1}^{N} \left( 1 + p_n \right) \le \exp \left( \sum_{n=1}^{N}p_n \right)</math> | |||
show that the infinite product converges precisely if the infinite sum of the ''p''<sub>''n''</sub> converges. This relies on the [[Monotone convergence theorem]]. More generally, the convergence of <math>\prod_{n=1}^\infty(1+p_n)</math> is equivalent to the convergence of <math>\sum_{n=1}^\infty p_n</math> if ''p<sub>n</sub>'' are real or complex numbers such that <math>\sum_{n=1}^\infty|p_n|^2<+\infty</math>, since <math>\log(1+x)=x+O(x^2)</math> in a neighbourhood of 0. | |||
==Product representations of functions== | |||
{{main|Weierstrass factorization theorem}} | |||
>One important result concerning infinite products is that every [[entire function]] ''f''(''z'') (that is, every function that is [[holomorphic function|holomorphic]] over the entire [[complex number|complex plane]]) can be factored into an infinite product of entire functions, each with at most a single root. In general, if ''f'' has a root of order ''m'' at the origin and has other complex roots at ''u''<sub>1</sub>, ''u''<sub>2</sub>, ''u''<sub>3</sub>, ... (listed with multiplicities equal to their orders), then | |||
:<math>f(z) = z^m e^{\phi(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{u_n} \right) \exp \left\lbrace \frac{z}{u_n} + \frac{1}{2}\left(\frac{z}{u_n}\right)^2 + \cdots + \frac{1}{\lambda_n} \left(\frac{z}{u_n}\right)^{\lambda_n} \right\rbrace </math> | |||
where λ<sub>''n''</sub> are non-negative integers that can be chosen to make the product converge, and φ(''z'') is some uniquely determined analytic function (which means the term before the product will have no roots in the complex plane). The above factorization is not unique, since it depends on the choice of values for λ<sub>''n''</sub>, and is not especially elegant. However, for most functions, there will be some minimum non-negative integer ''p'' such that λ<sub>''n''</sub> = ''p'' gives a convergent product, called the [[Weierstrass_factorization_theorem|canonical product representation]]. This ''p'' is called the ''rank'' of the canonical product. <!-- The ''genus'' is the (is it max? or min?) of the degree of φ and ''p''. --> In the event that ''p'' = 0, this takes the form | |||
:<math>f(z) = z^m e^{\phi(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{u_n}\right).</math> | |||
This can be regarded as a generalization of the [[Fundamental Theorem of Algebra]], since the product becomes finite and φ(''z'') is constant for polynomials. | |||
In addition to these examples, the following representations are of special note: | |||
{| cellspacing=15 | |||
|- valign=top | |||
| [[Sine]] function | |||
| <math>\sin(\pi z) = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)</math> | |||
| This is due to [[Euler]]. [[Wallis product|Wallis' formula for π]] is a special case of this. | |||
|- valign=top | |||
| [[Gamma function]] | |||
| <math>\frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}</math> | |||
| [[Schlömilch]] | |||
|- valign=top | |||
| [[Weierstrass sigma function]] | |||
| <math>\sigma(z) = z\prod_{\omega \in \Lambda_{*}} \left(1-\frac{z}{\omega}\right)e^{\frac{z^2}{2\omega^2}+\frac{z}{\omega}}</math> | |||
| Here <math>\Lambda_{*}</math> is the lattice without the origin. | |||
|- valign=top | |||
| [[Q-Pochhammer symbol]] | |||
| <math>(z;q)_\infty = \prod_{n=0}^\infty (1-zq^n)</math> | |||
| Widely used in [[q-analog]] theory. The [[Euler function]] is a special case. | |||
|- valign=top | |||
| [[Ramanujan theta function]] | |||
| <math>\begin{align} | |||
f(a,b) &=\sum_{n=-\infty}^\infty a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}} \\ | |||
&= \prod_{n=0}^\infty (1+a^{n+1}b^n)(1+a^nb^{n+1})(1-a^{n+1}b^{n+1}) | |||
\end{align}</math> | |||
| An expression of the [[Jacobi triple product]], also used in the expression of the Jacobi [[theta function]] | |||
|- valign=top | |||
| [[Riemann zeta function]] | |||
| <math>\zeta(z) = \prod_{n=1}^{\infty} \frac{1}{1 - p_n^{-z}}</math> | |||
| Here ''p''<sub>''n''</sub> denotes the sequence of [[prime number]]s. This is a special case of the [[Euler product]]. | |||
|} | |||
Note that the last of these is not a product representation of the same sort discussed above, as ζ is not entire. Rather, the above product representation of [[zeta function|ζ(z)]] converges precisely for Re(z) > 1, where it is an analytic function. By techniques of [[analytic continuation]] this function can be extended uniquely to an analytic function (still called ζ(z)) on the whole complex plane except for the point z=1, where it has a simple [[pole_(complex_analysis)|pole]]. | |||
==See also== | |||
*[[List of trigonometric identities#Infinite product formulae|Infinite products in trigonometry]] | |||
*[[Series (mathematics)|Infinite series]] | |||
*[[Continued fraction]] | |||
*[[Infinite expression (mathematics)|Infinite expression]] | |||
*[[Iterated binary operation]] | |||
== References == | |||
* {{cite book | |||
|last=Knopp | |||
|first=Konrad | |||
|authorlink=Konrad Knopp | |||
|title=Theory and Application of Infinite Series | |||
|publisher=[[Dover Publications]] | |||
|year=1990 | |||
|isbn=978-0-486-66165-0 | |||
|language=English translation | |||
}} | |||
* {{cite book | |||
|last=Rudin | |||
|first=Walter | |||
|authorlink=Walter Rudin | |||
|title=Real and Complex Analysis | |||
|edition=3rd | |||
|publisher=[[McGraw Hill]] | |||
|location=Boston | |||
|year=1987 | |||
|isbn=0-07-054234-1 | |||
}} | |||
* {{Cite book | |||
|editor1-last=Abramowitz | |||
|editor1-first=Milton | |||
|editor1-link=Milton Abramowitz | |||
|editor2-last=Stegun | |||
|editor2-first=Irene A. | |||
|editor2-link=Irene Stegun | |||
|title=[[Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]] | |||
|publisher=[[Dover Publications]] | |||
|year=1972 | |||
|isbn=978-0-486-61272-0 | |||
}} | |||
==External links== | |||
*[http://mathworld.wolfram.com/InfiniteProduct.html Infinite products from Wolfram Math World] | |||
[[Category:Sequences and series]] | |||
[[Category:Mathematical analysis]] | |||
[[Category:Multiplication]] | |||
[[es:Productorio]] |
Revision as of 07:48, 3 December 2013
In mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product
is defined to be the limit of the partial products a1a2...an as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here. If the product converges, then the limit of the sequence an as n increases without bound must be 1, while the converse is in general not true.
The best known examples of infinite products are probably some of the formulae for π, such as the following two products, respectively by Viète (Viète's formula, the first published infinite product in mathematics) and John Wallis (Wallis product):
Convergence criteria
The product of positive real numbers
converges if and only if the sum
converges. This allows the translation of convergence criteria for infinite sums into convergence criteria for infinite products. The same criterion applies to products of arbitrary complex numbers (including negative reals) if log is understood as a fixed branch of logarithm which satisfies log(1) = 0, with the proviso that the infinite product diverges when infinitely many an fall outside the domain of log, whereas finitely many such an can be ignored in the sum.
For products of reals in which each , written as, for instance, , where , the bounds
show that the infinite product converges precisely if the infinite sum of the pn converges. This relies on the Monotone convergence theorem. More generally, the convergence of is equivalent to the convergence of if pn are real or complex numbers such that , since in a neighbourhood of 0.
Product representations of functions
Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.
>One important result concerning infinite products is that every entire function f(z) (that is, every function that is holomorphic over the entire complex plane) can be factored into an infinite product of entire functions, each with at most a single root. In general, if f has a root of order m at the origin and has other complex roots at u1, u2, u3, ... (listed with multiplicities equal to their orders), then
where λn are non-negative integers that can be chosen to make the product converge, and φ(z) is some uniquely determined analytic function (which means the term before the product will have no roots in the complex plane). The above factorization is not unique, since it depends on the choice of values for λn, and is not especially elegant. However, for most functions, there will be some minimum non-negative integer p such that λn = p gives a convergent product, called the canonical product representation. This p is called the rank of the canonical product. In the event that p = 0, this takes the form
This can be regarded as a generalization of the Fundamental Theorem of Algebra, since the product becomes finite and φ(z) is constant for polynomials.
In addition to these examples, the following representations are of special note:
Sine function | This is due to Euler. Wallis' formula for π is a special case of this. | |
Gamma function | Schlömilch | |
Weierstrass sigma function | Here is the lattice without the origin. | |
Q-Pochhammer symbol | Widely used in q-analog theory. The Euler function is a special case. | |
Ramanujan theta function | An expression of the Jacobi triple product, also used in the expression of the Jacobi theta function | |
Riemann zeta function | Here pn denotes the sequence of prime numbers. This is a special case of the Euler product. |
Note that the last of these is not a product representation of the same sort discussed above, as ζ is not entire. Rather, the above product representation of ζ(z) converges precisely for Re(z) > 1, where it is an analytic function. By techniques of analytic continuation this function can be extended uniquely to an analytic function (still called ζ(z)) on the whole complex plane except for the point z=1, where it has a simple pole.
See also
- Infinite products in trigonometry
- Infinite series
- Continued fraction
- Infinite expression
- Iterated binary operation
References
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534