Euler's four-square identity: Difference between revisions
en>Michael Hardy punctuation correction required by WP:MOS |
en>Titus III Re-directed "bilinear" wiki-link to the more appropriate "bilinear map". |
||
Line 1: | Line 1: | ||
'''Linnik's theorem''' in [[analytic number theory]] answers a natural question after [[Dirichlet's theorem on arithmetic progressions]]. It asserts that there exist positive ''c'' and ''L'' such that, if we denote ''p''(''a'',''d'') the least [[primes in arithmetic progression|prime in the arithmetic progression]] | |||
:<math>a + nd,\ </math> | |||
where ''n'' runs through the positive [[integer]]s and ''a'' and ''d'' are any given positive [[coprime]] integers with 1 ≤ ''a'' ≤ ''d'' - 1, then: | |||
: <math> p(a,d) < c d^{L}. \; </math> | |||
The theorem is named after [[Yuri Vladimirovich Linnik]], who proved it in 1944.<ref>Linnik, Yu. V. ''On the least prime in an arithmetic progression I. The basic theorem'' Rec. Math. (Mat. Sbornik) N.S. 15 (57) (1944), pages 139-178</ref><ref>Linnik, Yu. V. ''On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon'' Rec. Math. (Mat. Sbornik) N.S. 15 (57) (1944), pages 347-368</ref> Although Linnik's proof showed ''c'' and ''L'' to be [[effective results in number theory|effectively computable]], he provided no numerical values for them. | |||
== Properties == | |||
It is known that ''L'' ≤ 2 for [[almost all]] integers ''d''.<ref>[[Enrico Bombieri|E. Bombieri]], [[John Friedlander|J. B. Friedlander]], [[Henryk Iwaniec|H. Iwaniec]]. "Primes in Arithmetic Progressions to Large Moduli. III", ''Journal of the American Mathematical Society'' '''2'''(2) (1989), pp. 215–224.</ref> | |||
On the [[generalized Riemann hypothesis]] it can be shown that | |||
: <math> p(a,d) \leq (1+o(1))\varphi(d)^2 \ln^2 d \; ,</math> | |||
where <math>\varphi</math> is the [[totient function]].<ref name="heath-brown"/> | |||
It is also conjectured that: | |||
: <math> p(a,d) < d^2. \; </math> <ref name="heath-brown"/> | |||
== Bounds for ''L'' == | |||
The constant ''L'' is called '''Linnik's constant''' and the following table shows the progress that has been made on determining its size. | |||
{| cellpadding="3" | |||
| L ≤ || Year of publication || Author | |||
|- | |||
| align="right" | 10000 || align="center" | 1957 || [[Pan Chengdong|Pan]]<ref>Pan Cheng Dong ''On the least prime in an arithmetical progression.'' Sci. Record (N.S.) 1 (1957) pp. 311-313</ref> | |||
|- | |||
| align="right" | 5448 || align="center" | 1958 || Pan | |||
|- | |||
| align="right" | 777 || align="center" | 1965 || [[Chen Jingrun|Chen]]<ref>Chen Jingrun ''On the least prime in an arithmetical progression.'' Sci. Sinica '''14''' (1965) pp. 1868-1871</ref> | |||
|- | |||
| align="right" | 630 || align="center" | 1971 || [[Matti Jutila|Jutila]] | |||
|- | |||
| align="right" | 550 || align="center" | 1970 || Jutila<ref>Jutila, M. ''A new estimate for Linnik's constant.'' Ann. Acad. Sci. Fenn. Ser. A I No. 471 (1970) 8 pp.</ref> | |||
|- | |||
| align="right" | 168 || align="center" | 1977 || Chen<ref>Chen Jingrun ''On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet's $L$-functions.'' Sci. Sinica '''20''' (1977), no. 5, pp. 529-562</ref> | |||
|- | |||
| align="right" | 80 || align="center" | 1977 || Jutila<ref>Jutila, M. ''On Linnik's constant.'' Math. Scand. '''41''' (1977), no. 1, pp. 45-62</ref> | |||
|- | |||
| align="right" | 36 || align="center" | 1977 || [[Sidney Graham|Graham]]<ref>''Applications of sieve methods'' Ph.D. Thesis, Univ. Michigan, Ann Arbor, Mich., 1977</ref> | |||
|- | |||
| align="right" | 20 || align="center" | 1981 || Graham<ref>Graham, S. W. ''On Linnik's constant.'' Acta Arith. '''39''' (1981), no. 2, pp. 163-179</ref> (submitted before Chen's 1979 paper) | |||
|- | |||
| align="right" | 17 || align="center" | 1979 || Chen<ref>Chen Jingrun ''On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's $L$-functions. II.'' Sci. Sinica '''22''' (1979), no. 8, pp. 859-889</ref> | |||
|- | |||
| align="right" | 16 || align="center" | 1986 || Wang | |||
|- | |||
| align="right" | 13.5 || align="center" | 1989 || Chen and [[Liu Jian Min|Liu]]<ref>Chen Jingrun and Liu Jian Min ''On the least prime in an arithmetical progression. III.'' Sci. China Ser. A '''32''' (1989), no. 6, pp. 654-673</ref><ref>Chen Jingrun and Liu Jian Min ''On the least prime in an arithmetical progression. IV.'' Sci. China Ser. A '''32''' (1989), no. 7, pp. 792-807</ref> | |||
|- | |||
| align="right" | 8 || align="center" | 1990 || Wang<ref>Wang ''On the least prime in an arithmetical progression. '' Acta Mathematica Sinica, New Series 1991 Vol. 7 No. 3 pp. 279-288</ref> | |||
|- | |||
| align="right" | 5.5 || align="center" | 1992 || [[Roger Heath-Brown|Heath-Brown]]<ref name="heath-brown">Heath-Brown, D. R. ''Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression'', Proc. London Math. Soc. '''64'''(3) (1992), pp. 265-338</ref> | |||
|- | |||
| align="right" | 5.2 || align="center" | 2009 || Xylouris<ref>Triantafyllos Xylouris, On Linnik's constant (2009). {{arXiv|0906.2749}}</ref> | |||
|- | |||
| align="right" | 5 || align="center" | 2011 || Xylouris<ref>Triantafyllos Xylouris, Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression (2011). Dr. rer. nat. dissertation.</ref> | |||
|} | |||
Moreover, in Heath-Brown's result the constant ''c'' is effectively computable. | |||
==Notes== | |||
{{reflist|colwidth=30em}} | |||
[[Category:Theorems in analytic number theory]] | |||
[[Category:Theorems about prime numbers]] |
Revision as of 00:09, 14 August 2013
Linnik's theorem in analytic number theory answers a natural question after Dirichlet's theorem on arithmetic progressions. It asserts that there exist positive c and L such that, if we denote p(a,d) the least prime in the arithmetic progression
where n runs through the positive integers and a and d are any given positive coprime integers with 1 ≤ a ≤ d - 1, then:
The theorem is named after Yuri Vladimirovich Linnik, who proved it in 1944.[1][2] Although Linnik's proof showed c and L to be effectively computable, he provided no numerical values for them.
Properties
It is known that L ≤ 2 for almost all integers d.[3]
On the generalized Riemann hypothesis it can be shown that
where is the totient function.[4]
It is also conjectured that:
Bounds for L
The constant L is called Linnik's constant and the following table shows the progress that has been made on determining its size.
L ≤ | Year of publication | Author |
10000 | 1957 | Pan[5] |
5448 | 1958 | Pan |
777 | 1965 | Chen[6] |
630 | 1971 | Jutila |
550 | 1970 | Jutila[7] |
168 | 1977 | Chen[8] |
80 | 1977 | Jutila[9] |
36 | 1977 | Graham[10] |
20 | 1981 | Graham[11] (submitted before Chen's 1979 paper) |
17 | 1979 | Chen[12] |
16 | 1986 | Wang |
13.5 | 1989 | Chen and Liu[13][14] |
8 | 1990 | Wang[15] |
5.5 | 1992 | Heath-Brown[4] |
5.2 | 2009 | Xylouris[16] |
5 | 2011 | Xylouris[17] |
Moreover, in Heath-Brown's result the constant c is effectively computable.
Notes
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
- ↑ Linnik, Yu. V. On the least prime in an arithmetic progression I. The basic theorem Rec. Math. (Mat. Sbornik) N.S. 15 (57) (1944), pages 139-178
- ↑ Linnik, Yu. V. On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon Rec. Math. (Mat. Sbornik) N.S. 15 (57) (1944), pages 347-368
- ↑ E. Bombieri, J. B. Friedlander, H. Iwaniec. "Primes in Arithmetic Progressions to Large Moduli. III", Journal of the American Mathematical Society 2(2) (1989), pp. 215–224.
- ↑ 4.0 4.1 4.2 Heath-Brown, D. R. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64(3) (1992), pp. 265-338
- ↑ Pan Cheng Dong On the least prime in an arithmetical progression. Sci. Record (N.S.) 1 (1957) pp. 311-313
- ↑ Chen Jingrun On the least prime in an arithmetical progression. Sci. Sinica 14 (1965) pp. 1868-1871
- ↑ Jutila, M. A new estimate for Linnik's constant. Ann. Acad. Sci. Fenn. Ser. A I No. 471 (1970) 8 pp.
- ↑ Chen Jingrun On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet's $L$-functions. Sci. Sinica 20 (1977), no. 5, pp. 529-562
- ↑ Jutila, M. On Linnik's constant. Math. Scand. 41 (1977), no. 1, pp. 45-62
- ↑ Applications of sieve methods Ph.D. Thesis, Univ. Michigan, Ann Arbor, Mich., 1977
- ↑ Graham, S. W. On Linnik's constant. Acta Arith. 39 (1981), no. 2, pp. 163-179
- ↑ Chen Jingrun On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's $L$-functions. II. Sci. Sinica 22 (1979), no. 8, pp. 859-889
- ↑ Chen Jingrun and Liu Jian Min On the least prime in an arithmetical progression. III. Sci. China Ser. A 32 (1989), no. 6, pp. 654-673
- ↑ Chen Jingrun and Liu Jian Min On the least prime in an arithmetical progression. IV. Sci. China Ser. A 32 (1989), no. 7, pp. 792-807
- ↑ Wang On the least prime in an arithmetical progression. Acta Mathematica Sinica, New Series 1991 Vol. 7 No. 3 pp. 279-288
- ↑ Triantafyllos Xylouris, On Linnik's constant (2009). Template:ArXiv
- ↑ Triantafyllos Xylouris, Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression (2011). Dr. rer. nat. dissertation.