Correlation function: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Cmglee
m Linkify
 
Line 1: Line 1:
{{Multiple issues|
{{expert-subject|date=April 2008}}
{{cleanup|date=November 2007}}
{{refimprove|date=July 2009}}
}}


[[File:Georgi-Glashow charges.svg|300px|right|thumb|The pattern of [[weak isospin]]s, [[weak hypercharge]]s, and strong charges for particles in the Georgi-Glashow model, rotated by the predicted [[weak mixing angle]], showing electric charge roughly along the vertical. In addition to [[Standard Model]] particles, the theory includes twelve colored X bosons, responsible for [[proton decay]].]]


When you are having trouble seeing per game while you are taking pleasure in it, try adjusting currently the brightness environment. Might make the display noise clear, enhancing your game playing expertise. And let's face it, you will not achieve any kind connected with success if you can not see what you're doing, so make the casino game meet your needs.<br><br>Humans may possibly [http://Dict.leo.org/?search=play+betting play betting] games to rest following a tremendously long working day in your workplace. Some wish socializing by tinkering thanks to friends and family. If you have whichever inquiries about where a lot more to use Clash of a Clans Cheat, you can make contact with us of our web site. Other individuals perform these animals when they're jobless along with require something for snapping their brains away their scenario. No be importance reasons why you enjoy, this information will give you a hand to engage in usual way which is considerably better.<br><br>Throne Rush has an exact same for just about all things in Clash. Instead associated with an Town Hall, it features a Castle. Instead to Clans, it has Brotherhoods. Instead of Trophies, it has Morale. Perhaps the one process it takes to a reality is its Immortal Heroes. clash of clans has a Barbarian King and a substantial Archer Queen which can be found special units that can be reused in battle within they just require work hours of time to heal back to full health care. In case you cherished this post as well as you would want to be given guidance with regards to clash of clans hack no survey ([http://prometeu.net have a peek at this web-site]) i implore you to visit the internet site. Throne Rush has similar heroes that could be hired, but they are more extreme and more abounding. They play almost the same way, nonetheless think players will indulge in using four or five Immortal Heroes instead related just two, as drawn out as they dont fool the balance of online game too severely.<br><br>Obviously if you are searching to a particular game so that it will buy but want regarding purchase it at the best price possible, utilize the "shopping" tab there on many search search engines. This will feasible you to immediately consider the prices of our own game at all any major retailers online. You can also encounter ratings for the insurer in question, helping people determine who you should always buy the game with.<br><br>Kill time for game of a person's season editions of very important titles. These usually come out per the four seasons or higher after our initial headline, but include a lot of the particular down-loadable and extra posts which was released with regard to steps once the for a start headline. These sport titles supply a lot more bang for an buck.<br><br>Make sure that clients build and buy a little bit of new laboratory so you're able to research improved barbarians. Eventually, in [http://mondediplo.com/spip.php?page=recherche&recherche=predicament predicament] you take part in the game for most months, you might finally be given the nirvana of five-star barbarians.<br><br>Computer games or computer games have increased in popularity nowadays, not with the younger generation, but also with parents as well. There are a number games available, ranging at a intellectual to the everywhere you look - your options can be found limitless. Online task playing games are one of the most popular games anywhere across the world. With this popularity, plenty of men and women are exploring and struggling to find ways to go along with the whole game as at once as they can; reasons why you are using computer How to hack in clash of clans range from simply trying to own your own chums stare at you about awe, or getting additional of game money which you really can sell later, or simply just into rid the game of this fun factor for the additional players.
In [[particle physics]], the '''Georgi–Glashow model''' is a particular [[grand unification theory]] (GUT) proposed by [[Howard Georgi]] and [[Sheldon Glashow]] in 1974. In this model  the [[standard model]] gauge groups [[SU(3) × SU(2) × U(1)]] are combined into a single [[simple Lie group|simple]] gauge group -- [[special unitary group|SU(5)]]. The unified group SU(5) is then thought to be [[Spontaneous symmetry breaking|spontaneously broken]] to the standard model subgroup at some high energy scale called the [[grand unification energy|grand unification scale]].
 
Since the Georgi–Glashow model combines [[lepton]]s and [[quark]]s into single [[irreducible representation]]s, there exist interactions which do not conserve [[baryon]] number, although they still conserve [[B-L]]. This yields a mechanism for [[proton decay]], and the rate of proton decay can be predicted from the dynamics of the model. However, proton decay has not yet been observed experimentally, and the resulting lower limit on the lifetime of the proton contradicts the predictions of this model.  However, the elegance of the model has led particle physicists to use it as the foundation for more complex models which yield longer proton lifetimes.
 
(For a more elementary introduction to how the representation theory of Lie algebras are related to particle physics, see the article [[Particle physics and representation theory]].)
 
This model suffers from the [[doublet-triplet splitting problem]].{{clarify|date=March 2012}}
 
== Breaking SU(5) ==
SU(5) breaking occurs when a [[Scalar field theory|scalar field]], analogous to the [[Higgs field]], and transforming in the [[adjoint endomorphism|adjoint]] of SU(5) acquires a [[vacuum expectation value]] proportional to the [[weak hypercharge]] generator{{Why?|date=August 2010}}
:<math>\frac{Y}{2}=\operatorname{diag}\left(-1/3, -1/3, -1/3, 1/2, 1/2\right)</math>
When this occurs SU(5) is [[spontaneous symmetry breaking|spontaneously broken]] to the [[subgroup]] of SU(5) commuting with the group generated by ''Y''. This unbroken subgroup is just the [[standard model]] group: [SU(3)×SU(2)×U(1)_Y]/'''Z'''<sub>6</sub>.
 
Under the unbroken subgroup the adjoint '''24''' transforms as
:<math>24\rightarrow (8,1)_0\oplus (1,3)_0\oplus (1,1)_0\oplus (3,2)_{-\frac{5}{6}}\oplus (\bar{3},2)_{\frac{5}{6}}</math>
giving the [[gauge boson]]s of the standard model. See [[restricted representation]].
 
The standard model [[quark]]s and [[lepton]]s fit neatly into representations of SU(5). Specifically, the left-handed [[fermion]]s combine into 3 generations of <math>\mathbf{\bar{5}}\oplus\mathbf{10}\oplus\mathbf{1}</math>. Under the unbroken subgroup these transform as
:<math>\bar{5}\rightarrow (\bar{3},1)_{\frac{1}{3}}\oplus (1,2)_{-\frac{1}{2}}</math> (d<sup>c</sup> and l)
:<math>10\rightarrow (3,2)_{\frac{1}{6}}\oplus (\bar{3},1)_{-\frac{2}{3}}\oplus (1,1)_1</math> (q, u<sup>c</sup> and e<sup>c</sup>)
:<math>1\rightarrow (1,1)_0</math> (&nu;<sup>c</sup>)
giving precisely the left-handed [[fermion]]ic content of the standard model, where for every [[Generation (particle physics)|generation]] d<sup>c</sup>, u<sup>c</sup>, e<sup>c</sup> and ν<sup>c</sup> stand for anti-[[Standard Model#Particles of Ordinary Matter|down-type quark]], anti-[[Standard Model#Particles of Ordinary Matter|up-type quark]], anti-[[Standard Model#Particles of Ordinary Matter|down-type lepton]] and anti-[[Standard Model#Particles of Ordinary Matter|up-type lepton]], respectively, and q and l stand for [[quark]] and [[lepton]].
Note that fermions transforming as a '''1''' under SU(5) are now thought to be necessary because of the evidence for [[neutrino oscillation]]s. Actually though, it is possible for there to be only left-handed neutrinos without any right-handed neutrinos if we could somehow introduce a tiny [[Majorana]]{{dn|date=December 2013}} coupling for the left-handed neutrinos.
 
Since the [[homotopy group]]
:<math>\pi_2\left(\frac{SU(5)}{[SU(3)\times SU(2)\times U(1)_Y]/\mathbb{Z}_6}\right)=\mathbb{Z}</math>
this model predicts [['t Hooft-Polyakov monopole]]s.
 
These monopoles have quantized Y magnetic charges. Since the electromagnetic charge Q is a linear combination of some SU(2) generator with Y/2, these monopoles also have quantized magnetic charges, where by magnetic here, we mean electromagnetic magnetic charges.
 
==Minimal supersymmetric SU(5)==
{{Expand section|date=April 2008}}
 
===Spacetime===
The N=1 superspace extension of 3+1 Minkowski spacetime.
 
===Spatial symmetry===
N=1 SUSY over 3+1 Minkowski spacetime without R-symmetry.
 
===Gauge symmetry group===
SU(5)
 
===Global internal symmetry===
'''Z'''<sub>2</sub> (matter parity)
 
===Matter parity===
To prevent unwanted couplings in the [[supersymmetry|supersymmetric]] version of the model, we assign a '''Z'''<sub>2</sub> [[matter parity]] to the chiral superfields with the matter fields having odd parity and the Higgs having even parity. This is unnecessary in the nonsupersymmetric version, but then, we can't protect the electroweak Higgs from quadratic radiative mass corrections. See [[hierarchy problem]]. In the nonsupersymmetric version the action is invariant under a similar '''Z'''<sub>2</sub> symmetry because the matter fields are all [[fermion]]ic and thus must appear in the action in pairs, while the Higgs fields are [[boson]]ic.
 
===Vector superfields===
Those associated with the SU(5) gauge symmetry
 
===Chiral superfields===
As complex representations:
 
{|
|-
|label||description||multiplicity||SU(5) rep||<math>\mathbb{Z}_2</math> rep
|-
|Φ||GUT Higgs field||1||'''24'''||+
|-
|H<sub>u<sub>||electroweak Higgs field||1||'''5'''||+
|-
|H<sub>d</sub>||electroweak Higgs field||1||'''<math>\bar{5}</math>'''||+
|-
|'''<math>\bar{5}</math>'''||matter fields||3||'''<math>\bar{5}</math>'''||-
|-
|'''10'''||matter fields||3||'''10'''||-
|-
|N<sup>c</sup>||sterile neutrinos||???||'''1'''||-
|}
 
===Superpotential===
A generic invariant [[renormalizable]] [[superpotential]] is a (complex) <math>SU(5)\times\mathbb{Z}_2</math> invariant cubic polynomial in the superfields. It is a linear combination of the following terms:
<math>
\begin{matrix}
\Phi^2&\Phi^A_B \Phi^B_A\\
\Phi^3&\Phi^A_B \Phi^B_C \Phi^C_A\\
H_d H_u&{H_d}_A H_u^A\\
H_d \Phi H_u&{H_d}_A \Phi^A_B H_u^B\\
H_u \mathbf{10}_i\;\mathbf{10}_j&\epsilon_{ABCDE} H_u^A \mathbf{10}^{BC}_i \mathbf{10}^{DE}_j\\
H_d \mathbf{\bar{5}}_i\;\mathbf{10}_j&{H_d}_A \mathbf{\bar{5}}_{Bi} \mathbf{10}^{AB}_{j}\\
H_u \mathbf{\bar{5}}_i N^c_j&H_u^A \mathbf{\bar{5}}_{Ai} N^c_j\\
N^c_i N^c_j&N^c_i N^c_j\\
\end{matrix}
</math>
 
The first column is an Abbreviation of the second column (neglecting proper normalization factors), where capital indices are SU(5) indices, and i and j are the generation indices.
 
The last two rows presupposes the multiplicity of N<sup>c</sup> is not zero (i.e. that a [[sterile neutrino]] exists). The coupling H<sub>u</sub> 10<sub>i</sub> 10<sub>j</sub> has coefficients which are symmetric in i and j. The coupling N<sup>c</sup><sub>i</sub>N<sup>c</sup><sub>j</sub> has coefficients which are symmetric in i and j. Note that the number of [[sterile neutrino]] [[Generation (particle physics)|generation]]s need not be three, unless the SU(5) is embedded in a higher unification scheme such as [[SO(10) (physics)|SO(10)]].
 
===Vacua===
The vacua correspond to the mutual zeros of the F and D terms. Let's first look at the case where the VEVs of all the chiral fields are zero except for Φ.
 
====The &Phi; sector====
<math>W=Tr[a\Phi^2+b\Phi^3]</math>
 
The F zeros corresponds to finding the stationary points of W subject to the traceless constraint <math>Tr[\Phi]=0</math>. So,
<math>2a\Phi+3b\Phi^2=\lambda \mathbf{1}</math>
where λ is a Lagrange multiplier.
 
Up to an SU(5) (unitary) transformation,
 
<math>
\Phi=\left\{
\begin{matrix}
  \operatorname{diag}(0,0,0,0,0)\\
  \operatorname{diag}(\frac{2a}{9b},\frac{2a}{9b},\frac{2a}{9b},\frac{2a}{9b},-\frac{8a}{9b})\\
  \operatorname{diag}(\frac{4a}{3b},\frac{4a}{3b},\frac{4a}{3b},-\frac{2a}{b},-\frac{2a}{b})
\end{matrix}
\right.
</math>
 
The three cases are called case I, II and III and they break the gauge symmetry into SU(5), <math>[SU(4)\times U(1)]/\mathbb{Z}_4</math> and <math>[SU(3)\times SU(2)\times U(1)]/\mathbb{Z}_6</math> respectively (the stabilizer of the VEV).
 
In other words, there at least three different superselection sections, which is typical for supersymmetric theories.
 
Only case III makes any [[phenomenology (science)|phenomenological]] sense and so, we will focus on this case from now onwards.
 
It can be verified that this solution together with zero VEVs for all the other chiral multiplets is a zero of the [[F-term]]s and [[D-term]]s. The matter parity remains unbroken (right up to the TeV scale).
 
====Decomposition====
The gauge algebra '''24''' decomposes as <math>\begin{pmatrix}(8,1)_0\\(1,3)_0\\(1,1)_0\\(3,2)_{-\frac{5}{6}}\\(\bar{3},2)_{\frac{5}{6}}\end{pmatrix}</math>. This '''24''' is a real representation, so the last two terms need explanation. Both <math>(3,2)_{-\frac{5}{6}}</math> and <math>(\bar{3},2)_{\frac{5}{6}}</math> are complex representations. However, the direct sum of both representation decomposes into two irreducible real representations and we only take half of the direct sum, i.e. one of the two real irreducible copies.  The first three components are left unbroken. The adjoint Higgs also has a similar decomposition, except that it is complex. The [[Higgs mechanism]] causes one real HALF of the <math>(3,2)_{-\frac{5}{6}}</math> and <math>(\bar{3},2)_{\frac{5}{6}}</math> of the adjoint Higgs to be absorbed. The other real half acquires a mass coming from the [[D-term]]s. And the other three components of the adjoint Higgs, <math>(8,1)_0</math>, <math>(1,3)_0</math> and <math>(1,1)_0</math> acquire GUT scale masses coming from self pairings of the superpotential, aΦ<sup>2</sup>+b<Φ>Φ<sup>2</sup>.
 
The sterile neutrinos, if any exists, would also acquire a GUT scale Majorana mass coming from the superpotential coupling ν<sup>c2</sup>.
 
Because of matter parity, the matter representations <math>\bar{5}</math> and '''10''' remain chiral.
 
It's the Higgs fields 5<sub>H</sub> and <math>\bar{5}_H</math> which are interesting.
{|
|-
|<math>5_H</math>
|
|<math>\bar{5}_H</math>
|-
|<math>
\begin{pmatrix}
(3,1)_{-\frac{1}{3}}\\
(1,2)_{\frac{1}{2}}
\end{pmatrix}
</math>
|<math>
\begin{matrix}
\_\_\_\\
???
\end{matrix}
</math>
|<math>
\begin{pmatrix}
(\bar{3},1)_{\frac{1}{3}}\\
(1,2)_{-\frac{1}{2}}
\end{pmatrix}
</math>
|}
 
The two relevant superpotential terms here are <math>5_H \bar{5}_H</math> and <math><24>5_H \bar{5}_H</math>. Unless there happens to be some [[fine tuning]], we would expect both the triplet terms and the doublet terms to pair up, leaving us with no light electroweak doublets. This is in complete disagreement with phenomenology. See [[doublet-triplet splitting problem]] for more details.
 
====Fermion masses====
See [[Georgi-Jarlskog mass relation]].
 
==Lee Smolin's view of SU(5)==
In his book ''[[The Trouble with Physics]]'', Smolin states:
 
{{quote|After some twenty-five years, we are still waiting. No protons have decayed. We have been waiting long enough to know that SU(5) grand unification is wrong. It's a beautiful idea, but one that nature seems not to have adopted. Page 64.
 
Indeed, it would be hard to underestimate the implications of this negative result. SU(5) is the most elegant way imaginable of unifying quarks with leptons, and it leads to a codification of the properties of the standard model in simple terms. Even after twenty-five years, I still find it stunning that SU(5) doesn't work. Page 65.
 
{{cite book |last=Smolin |first=Lee|authorlink=Lee Smolin|year=2007 |title=[[The Trouble with Physics]]}}
}}
 
==Popular culture==
When the filmmaker Sandy Bates (played by [[Woody Allen]]) in the 1980 Woody Allen film [[Stardust Memories]] launches a depressive soliloquy with the quote, "Did anybody read on the front page of The Times that matter is decaying?", this was almost certainly a reference to the Georgi–Glashow model, given the film's period, the importance of the Georgi–Glashow model at the time and the many contemporary layperson articles in circulation about some of the model's most striking consequences, particularly its mechanism for proton decay. An actual New York Times article<ref>Physics sometimes takes G.U.T.s, New York Times, September 19, 1982</ref> appeared two years later, fulfilling Allen's blackly humorous foreshadowing of a world whose news was so baleful that the mainstream media were systematically reporting its material demise.
 
==References==
<references />
* Howard Georgi and Sheldon Glashow, ''Unity of All Elementary-Particle Forces'', Physical Review Letters, '''32''' (1974) 438.
*{{cite arXiv |author=[[John Baez|J.C. Baez]], J. Huerta |eprint=0904.1556 |title=The Algebra of Grand Unified Theories |year=2009 |class=hep-th }}
 
{{DEFAULTSORT:Georgi-Glashow model}}
[[Category:Particle physics]]

Revision as of 18:33, 4 December 2013

Template:Multiple issues

The pattern of weak isospins, weak hypercharges, and strong charges for particles in the Georgi-Glashow model, rotated by the predicted weak mixing angle, showing electric charge roughly along the vertical. In addition to Standard Model particles, the theory includes twelve colored X bosons, responsible for proton decay.

In particle physics, the Georgi–Glashow model is a particular grand unification theory (GUT) proposed by Howard Georgi and Sheldon Glashow in 1974. In this model the standard model gauge groups SU(3) × SU(2) × U(1) are combined into a single simple gauge group -- SU(5). The unified group SU(5) is then thought to be spontaneously broken to the standard model subgroup at some high energy scale called the grand unification scale.

Since the Georgi–Glashow model combines leptons and quarks into single irreducible representations, there exist interactions which do not conserve baryon number, although they still conserve B-L. This yields a mechanism for proton decay, and the rate of proton decay can be predicted from the dynamics of the model. However, proton decay has not yet been observed experimentally, and the resulting lower limit on the lifetime of the proton contradicts the predictions of this model. However, the elegance of the model has led particle physicists to use it as the foundation for more complex models which yield longer proton lifetimes.

(For a more elementary introduction to how the representation theory of Lie algebras are related to particle physics, see the article Particle physics and representation theory.)

This model suffers from the doublet-triplet splitting problem.Template:Clarify

Breaking SU(5)

SU(5) breaking occurs when a scalar field, analogous to the Higgs field, and transforming in the adjoint of SU(5) acquires a vacuum expectation value proportional to the weak hypercharge generatorTemplate:Why?

When this occurs SU(5) is spontaneously broken to the subgroup of SU(5) commuting with the group generated by Y. This unbroken subgroup is just the standard model group: [SU(3)×SU(2)×U(1)_Y]/Z6.

Under the unbroken subgroup the adjoint 24 transforms as

giving the gauge bosons of the standard model. See restricted representation.

The standard model quarks and leptons fit neatly into representations of SU(5). Specifically, the left-handed fermions combine into 3 generations of . Under the unbroken subgroup these transform as

(dc and l)
(q, uc and ec)
c)

giving precisely the left-handed fermionic content of the standard model, where for every generation dc, uc, ec and νc stand for anti-down-type quark, anti-up-type quark, anti-down-type lepton and anti-up-type lepton, respectively, and q and l stand for quark and lepton. Note that fermions transforming as a 1 under SU(5) are now thought to be necessary because of the evidence for neutrino oscillations. Actually though, it is possible for there to be only left-handed neutrinos without any right-handed neutrinos if we could somehow introduce a tiny MajoranaTemplate:Dn coupling for the left-handed neutrinos.

Since the homotopy group

this model predicts 't Hooft-Polyakov monopoles.

These monopoles have quantized Y magnetic charges. Since the electromagnetic charge Q is a linear combination of some SU(2) generator with Y/2, these monopoles also have quantized magnetic charges, where by magnetic here, we mean electromagnetic magnetic charges.

Minimal supersymmetric SU(5)

Template:Expand section

Spacetime

The N=1 superspace extension of 3+1 Minkowski spacetime.

Spatial symmetry

N=1 SUSY over 3+1 Minkowski spacetime without R-symmetry.

Gauge symmetry group

SU(5)

Global internal symmetry

Z2 (matter parity)

Matter parity

To prevent unwanted couplings in the supersymmetric version of the model, we assign a Z2 matter parity to the chiral superfields with the matter fields having odd parity and the Higgs having even parity. This is unnecessary in the nonsupersymmetric version, but then, we can't protect the electroweak Higgs from quadratic radiative mass corrections. See hierarchy problem. In the nonsupersymmetric version the action is invariant under a similar Z2 symmetry because the matter fields are all fermionic and thus must appear in the action in pairs, while the Higgs fields are bosonic.

Vector superfields

Those associated with the SU(5) gauge symmetry

Chiral superfields

As complex representations:

label description multiplicity SU(5) rep rep
Φ GUT Higgs field 1 24 +
Hu electroweak Higgs field 1 5 +
Hd electroweak Higgs field 1 +
matter fields 3 -
10 matter fields 3 10 -
Nc sterile neutrinos ??? 1 -

Superpotential

A generic invariant renormalizable superpotential is a (complex) invariant cubic polynomial in the superfields. It is a linear combination of the following terms:

The first column is an Abbreviation of the second column (neglecting proper normalization factors), where capital indices are SU(5) indices, and i and j are the generation indices.

The last two rows presupposes the multiplicity of Nc is not zero (i.e. that a sterile neutrino exists). The coupling Hu 10i 10j has coefficients which are symmetric in i and j. The coupling NciNcj has coefficients which are symmetric in i and j. Note that the number of sterile neutrino generations need not be three, unless the SU(5) is embedded in a higher unification scheme such as SO(10).

Vacua

The vacua correspond to the mutual zeros of the F and D terms. Let's first look at the case where the VEVs of all the chiral fields are zero except for Φ.

The Φ sector

The F zeros corresponds to finding the stationary points of W subject to the traceless constraint . So, where λ is a Lagrange multiplier.

Up to an SU(5) (unitary) transformation,

The three cases are called case I, II and III and they break the gauge symmetry into SU(5), and respectively (the stabilizer of the VEV).

In other words, there at least three different superselection sections, which is typical for supersymmetric theories.

Only case III makes any phenomenological sense and so, we will focus on this case from now onwards.

It can be verified that this solution together with zero VEVs for all the other chiral multiplets is a zero of the F-terms and D-terms. The matter parity remains unbroken (right up to the TeV scale).

Decomposition

The gauge algebra 24 decomposes as . This 24 is a real representation, so the last two terms need explanation. Both and are complex representations. However, the direct sum of both representation decomposes into two irreducible real representations and we only take half of the direct sum, i.e. one of the two real irreducible copies. The first three components are left unbroken. The adjoint Higgs also has a similar decomposition, except that it is complex. The Higgs mechanism causes one real HALF of the and of the adjoint Higgs to be absorbed. The other real half acquires a mass coming from the D-terms. And the other three components of the adjoint Higgs, , and acquire GUT scale masses coming from self pairings of the superpotential, aΦ2+b<Φ>Φ2.

The sterile neutrinos, if any exists, would also acquire a GUT scale Majorana mass coming from the superpotential coupling νc2.

Because of matter parity, the matter representations and 10 remain chiral.

It's the Higgs fields 5H and which are interesting.

The two relevant superpotential terms here are and . Unless there happens to be some fine tuning, we would expect both the triplet terms and the doublet terms to pair up, leaving us with no light electroweak doublets. This is in complete disagreement with phenomenology. See doublet-triplet splitting problem for more details.

Fermion masses

See Georgi-Jarlskog mass relation.

Lee Smolin's view of SU(5)

In his book The Trouble with Physics, Smolin states:

31 year-old Systems Analyst Bud from Deep River, spends time with pursuits for instance r/c cars, property developers new condo in singapore singapore and books. Last month just traveled to Orkhon Valley Cultural Landscape.

Popular culture

When the filmmaker Sandy Bates (played by Woody Allen) in the 1980 Woody Allen film Stardust Memories launches a depressive soliloquy with the quote, "Did anybody read on the front page of The Times that matter is decaying?", this was almost certainly a reference to the Georgi–Glashow model, given the film's period, the importance of the Georgi–Glashow model at the time and the many contemporary layperson articles in circulation about some of the model's most striking consequences, particularly its mechanism for proton decay. An actual New York Times article[1] appeared two years later, fulfilling Allen's blackly humorous foreshadowing of a world whose news was so baleful that the mainstream media were systematically reporting its material demise.

References

  1. Physics sometimes takes G.U.T.s, New York Times, September 19, 1982
  • Howard Georgi and Sheldon Glashow, Unity of All Elementary-Particle Forces, Physical Review Letters, 32 (1974) 438.
  • Template:Cite arXiv