Semantic holism
Template:Use British (Oxford) English Template:SpecialChars
ISO 31-11 was the part of international standard ISO 31 that defines mathematical signs and symbols for use in physical sciences and technology. It was superseded in 2009 by ISO 80000-2.[1]
Its definitions include the following:[2]
Mathematical logic
Sign | Example | Name | Meaning and verbal equivalent | Remarks |
---|---|---|---|---|
∧ | p ∧ q | conjunction sign | p and q | |
∨ | p ∨ q | disjunction sign | p or q (or both) | |
¬ | ¬ p | negation sign | negation of p; not p; non p | |
⇒ | p ⇒ q | implication sign | if p then q; p implies q | Can also be written as q ⇐ p. Sometimes → is used. |
∀ | ∀x∈A p(x) (∀x∈A) p(x) |
universal quantifier | for every x belonging to A, the proposition p(x) is true | The "∈A" can be dropped where A is clear from context. |
∃ | ∃x∈A p(x) (∃x∈A) p(x) |
existential quantifier | there exists an x belonging to A for which the proposition p(x) is true | The "∈A" can be dropped where A is clear from context. ∃! is used where exactly one x exists for which p(x) is true. |
Sets
Sign | Example | Meaning and verbal equivalent | Remarks |
---|---|---|---|
∈ | x ∈ A | x belongs to A; x is an element of the set A | |
∉ | x ∉ A | x does not belong to A; x is not an element of the set A | The negation stroke can also be vertical. |
∋ | A ∋ x | the set A contains x (as an element) | same meaning as x ∈ A |
∌ | A ∌ x | the set A does not contain x (as an element) | same meaning as x ∉ A |
{ } | {x1, x2, ..., xn} | set with elements x1, x2, ..., xn | also {xi ∣ i ∈ I}, where I denotes a set of indices |
{ ∣ } | {x ∈ A ∣ p(x)} | set of those elements of A for which the proposition p(x) is true | Example: {x ∈ ℝ ∣ x > 5} The ∈A can be dropped where this set is clear from the context. |
card | card(A) | number of elements in A; cardinal of A | |
∖ | A ∖ B | difference between A and B; A minus B | The set of elements which belong to A but not to B. A ∖ B = { x ∣ x ∈ A ∧ x ∉ B } A − B should not be used. |
∅ | the empty set | ||
ℕ | the set of natural numbers; the set of positive integers and zero | ℕ = {0, 1, 2, 3, ...} Exclusion of zero is denoted by an asterisk: ℕ* = {1, 2, 3, ...} ℕk = {0, 1, 2, 3, ..., k − 1} | |
ℤ | the set of integers | ℤ = {..., −3, −2, −1, 0, 1, 2, 3, ...} ℤ* = ℤ ∖ {0} = {..., −3, −2, −1, 1, 2, 3, ...} | |
ℚ | the set of rational numbers | ℚ* = ℚ ∖ {0} | |
ℝ | the set of real numbers | ℝ* = ℝ ∖ {0} | |
ℂ | the set of complex numbers | ℂ* = ℂ ∖ {0} | |
[, ] | [a, b] | closed interval in ℝ from a (included) to b (included) | [a, b] = {x ∈ ℝ ∣ a ≤ x ≤ b} |
], ] (, ] |
]a, b] (a, b] |
left half-open interval in ℝ from a (excluded) to b (included) | ]a, b] = {x ∈ ℝ ∣ a < x ≤ b} |
[, [ [, ) |
[a, b[ [a, b) |
right half-open interval in ℝ from a (included) to b (excluded) | [a, b[ = {x ∈ ℝ ∣ a ≤ x < b} |
], [ (, ) |
]a, b[ (a, b) |
open interval in ℝ from a (excluded) to b (excluded) | ]a, b[ = {x ∈ ℝ ∣ a < x < b} |
⊆ | B ⊆ A | B is included in A; B is a subset of A | Every element of B belongs to A. ⊂ is also used. |
⊂ | B ⊂ A | B is properly included in A; B is a proper subset of A | Every element of B belongs to A, but B is not equal to A. If ⊂ is used for "included", then ⊊ should be used for "properly included". |
⊈ | C ⊈ A | C is not included in A; C is not a subset of A | ⊄ is also used. |
⊇ | A ⊇ B | A includes B (as subset) | A contains every element of B. ⊃ is also used. B ⊆ A means the same as A ⊇ B. |
⊃ | A ⊃ B. | A includes B properly. | A contains every element of B, but A is not equal to B. If ⊃ is used for "includes", then ⊋ should be used for "includes properly". |
⊉ | A ⊉ C | A does not include C (as subset) | ⊅ is also used. A ⊉ C means the same as C ⊈ A. |
∪ | A ∪ B | union of A and B | The set of elements which belong to A or to B or to both A and B. A ∪ B = { x ∣ x ∈ A ∨ x ∈ B } |
⋃ | union of a collection of sets | , the set of elements belonging to at least one of the sets A1, …, An. and , are also used, where I denotes a set of indices. | |
∩ | A ∩ B | intersection of A and B | The set of elements which belong to both A and B. A ∩ B = { x ∣ x ∈ A ∧ x ∈ B } |
⋂ | intersection of a collection of sets | , the set of elements belonging to all sets A1, …, An. and , ⋂i∈I are also used, where I denotes a set of indices. | |
∁ | ∁AB | complement of subset B of A | The set of those elements of A which do not belong to the subset B. The symbol A is often omitted if the set A is clear from context. Also ∁AB = A ∖ B. |
(, ) | (a, b) | ordered pair a, b; couple a, b | (a, b) = (c, d) if and only if a = c and b = d. ⟨a, b⟩ is also used. |
(, …, ) | (a1, a2, …, an) | ordered n-tuple | ⟨a1, a2, …, an⟩ is also used. |
× | A × B | cartesian product of A and B | The set of ordered pairs (a, b) such that a ∈ A and b ∈ B. A × B = { (a, b) ∣ a ∈ A ∧ b ∈ B } A × A × ⋯ × A is denoted by An, where n is the number of factors in the product. |
Δ | ΔA | set of pairs (a, a) ∈ A × A where a ∈ A; diagonal of the set A × A | ΔA = { (a, a) ∣ a ∈ A } idA is also used. |
Miscellaneous signs and symbols
Sign | Example | Meaning and verbal equivalent | Remarks |
---|---|---|---|
≝ |
a ≝ b | a is by definition equal to b [2] | := is also used |
= | a = b | a equals b | ≡ may be used to emphasize that a particular equality is an identity. |
≠ | a ≠ b | a is not equal to b | may be used to emphasize that a is not identically equal to b. |
≙ | a ≙ b | a corresponds to b | On a 1:106 map: 1 cm ≙ 10 km. |
≈ | a ≈ b | a is approximately equal to b | The symbol ≃ is reserved for "is asymptotically equal to". |
∼ ∝ |
a ∼ b a ∝ b |
a is proportional to b | |
< | a < b | a is less than b | |
> | a > b | a is greater than b | |
≤ | a ≤ b | a is less than or equal to b | The symbol ≦ is also used. |
≥ | a ≥ b | a is greater than or equal to b | The symbol ≧ is also used. |
≪ | a ≪ b | a is much less than b | |
≫ | a ≫ b | a is much greater than b | |
∞ | infinity | ||
( ) [ ] { } |
(a+b)c [a+b]c {a+b}c a+bc |
ac+bc, parentheses ac+bc, square brackets ac+bc, braces ac+bc, angle brackets |
In ordinary algebra, the sequence of (), [], {}, in order of nesting is not standardized. Special uses are made of (), [], {}, in particular fields.[3] |
∥ | AB ∥ CD | the line AB is parallel to the line CD | |
ABCD | the line AB is perpendicular to the line CD[4] |
Operations
Sign | Example | Meaning and verbal equivalent | Remarks |
---|---|---|---|
+ | a + b | a plus b | |
− | a − b | a minus b | |
± | a ± b | a plus or minus b | |
∓ | a ∓ b | a minus or plus b | −(a ± b) = −a ∓ b |
... | ... | ... | ... |
⋮ |
Functions
Exponential and logarithmic functions
Example | Meaning and verbal equivalent | Remarks |
---|---|---|
[[e (mathematical constant)|Template:Mvar]] | base of natural logarithms | Template:Mvar = 2.718 28... |
Template:MvarTemplate:Mvar | exponential function to the base Template:Mvar of Template:Mvar | |
logTemplate:Mvar Template:Mvar | logarithm to the base Template:Mvar of Template:Mvar | |
lb Template:Mvar | binary logarithm (to the base 2) of Template:Mvar | lb Template:Mvar = log2 Template:Mvar |
ln Template:Mvar | natural logarithm (to the base Template:Mvar) of Template:Mvar | ln Template:Mvar = logTemplate:Mvar Template:Mvar |
lg Template:Mvar | common logarithm (to the base 10) of Template:Mvar | lg Template:Mvar = log10 Template:Mvar |
... | ... | ... |
⋮ |
Circular and hyperbolic functions
Example | Meaning and verbal equivalent | Remarks |
---|---|---|
Potter or Ceramic Artist Harry Rave from Cobden, spends time with hobbies for instance magic, property developers house in singapore singapore and fitness. Finds inspiration through travel and just spent 7 months at Keoladeo National Park. | ratio of the circumference of a circle to its diameter | Potter or Ceramic Artist Harry Rave from Cobden, spends time with hobbies for instance magic, property developers house in singapore singapore and fitness. Finds inspiration through travel and just spent 7 months at Keoladeo National Park. = 3.141 59... |
... | ... | ... |
⋮ |
Complex numbers
Matrices
Example | Meaning and verbal equivalent | Remarks |
---|---|---|
A | matrix A | ... |
... | ... | ... |
⋮ |
Coordinate systems
Coordinates | Position vector and its differential | Name of coordinate system | Remarks |
---|---|---|---|
x, y, z | [x y z] = [x y z]; [dx dy dz]; | cartesian | x1, x2, x3 for the coordinates and e1, e2, e3 for the base vectors are also used. This notation easily generalizes to n-mensional space. ex, ey, ex form an orthonormal right-handed system. For the base vectors, i, j, k are also used. |
ρ, φ, z | [x, y, z] = [ρ cos(φ), ρ sin(φ), z] | cylindrical | eρ(φ), eφ(φ), ez form an orthonormal right-handed system. lf z= 0, then ρ and φ are the polar coordinates. |
r, θ, φ | [x, y, z] = r [sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)] | spherical | er(θ,φ), eθ(θ,φ),eφ(φ) form an orthonormal right-handed system. |
Vectors and tensors
Example | Meaning and verbal equivalent | Remarks |
---|---|---|
a |
vector a | Instead of italic boldface, vectors can also be indicated by an arrow above the letter symbol. Any vector a can be multiplied by a scalar k, i.e. ka. |
... | ... | ... |
⋮ |
Special functions
Example | Meaning and verbal equivalent | Remarks |
---|---|---|
Template:MvarTemplate:Mvar(Template:Mvar) | cylindrical Bessel functions (of the first kind) | ... |
... | ... | ... |
⋮ |
See also
References and notes
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
- ↑ Template:Cite web
- ↑ 2.0 2.1
20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ These brace or fence characters are upper level unicode characters, fairly recently established and so may not display correctly in every browser. A close approximation of the appearance is found in the standard Latin characters: ( ), [ ], { }, < >. A more accurate glyph depiction of the mathematical angle bracket characters are found in the Chinese-Japanese-Korean (CJK) punctuation category: 〈h; 〉h;.
- ↑ If the perpendicular symbol, ⟂h;, does not display correctly, it is similar to ⊥h; (up tack: sometimes meaning orthogonal to) and it also appears similar to ⏊h; (the dentistry: symbol light up and horizontal)