Calderón–Zygmund lemma

From formulasearchengine
Revision as of 17:45, 16 January 2014 by 165.134.12.129 (talk) (My bad.)
Jump to navigation Jump to search

In mathematics, the analytic Fredholm theorem is a result concerning the existence of bounded inverses for a family of bounded linear operators on a Hilbert space. It is the basis of two classical and important theorems, the Fredholm alternative and the Hilbert–Schmidt theorem. The result is named after the Swedish mathematician Erik Ivar Fredholm.

Statement of the theorem

Let G ⊆ C be a domain (an open and connected set). Let (H, ⟨ , ⟩) be a real or complex Hilbert space and let Lin(H) denote the space of bounded linear operators from H into itself; let I denote the identity operator. Let B : G → Lin(H) be a mapping such that

  • B is analytic on G in the sense that that the limit
limλλ0B(λ)B(λ0)λλ0
exists for all λ0 ∈ G; and

Then either

  • (I − B(λ))−1 does not exist for any λ ∈ G; or
  • (I − B(λ))−1 exists for every λ ∈ G \ S, where S is a discrete subset of G (i.e., S has no limit points in G). In this case, the function taking λ to (I − B(λ))−1 is analytic on G \ S and, if λ ∈ S, then the equation
B(λ)ψ=ψ
has a finite-dimensional family of solutions.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 (Theorem 7.92)