Sea ice growth processes

From formulasearchengine
Revision as of 09:44, 8 November 2013 by en>Yobot (Salt content: Reference before punctuation detected and fixed using AWB (9585))
Jump to navigation Jump to search

RouchéCapelli theorem is the theorem in linear algebra that allows computing the number of solutions in a system of linear equations given the ranks of its augmented matrix and coefficient matrix. The theorem is known as Kronecker–Capelli theorem in Russia, Rouché–Capelli theorem in Italy, Rouché–Fontené theorem in France and Rouché–Frobenius theorem in Spain and many countries in Latin America.

Formal statement

A system of linear equations with n variables has a solution if and only if the rank of its coefficient matrix A is equal to the rank of its augmented matrix [A|b]. If there are solutions, they form an affine subspace of n of dimension n − rank(A). In particular:

  • if n = rank(A), the solution is unique,
  • otherwise there are infinite number of solutions.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534


Template:Linear-algebra-stub

cs:Soustava lineárních rovnic#Frobeniova věta