Normal number

From formulasearchengine
Revision as of 03:53, 31 January 2014 by en>Myasuda (Properties and examples: added missing diacritics)
Jump to navigation Jump to search

In special relativity, four-momentum is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with three-momentum p = (px, py, pz) and energy E is

P=(P0P1P2P3)=(E/cpxpypz)

The four-momentum is useful in relativistic calculations because it is a Lorentz vector. This means that it is easy to keep track of how it transforms under Lorentz transformations.

The above definition applies under the coordinate convention that x0 = ct. Some authors use the convention x0 = t which yields a modified definition with P0 = E/c2. It is also possible to define covariant four-momentum Pμ where the sign of the energy is reversed.

Minkowski norm

Calculating the Minkowski norm of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass:

P2=PμPμ=ημνPμPν=E2c2|p|2=m2c2

where we use the convention that

ημν=(1000010000100001)

is the metric tensor of special relativity. The magnitude ||P||2 is Lorentz invariant, meaning its value is not changed by Lorentz transformations/boosting into different frames of reference.

Relation to four-velocity

For a massive particle, the four-momentum is given by the particle's invariant mass m multiplied by the particle's four-velocity:

Pμ=mUμ

where the four-velocity is

(U0U1U2U3)=(γcγvxγvyγvz)

and

γ=11(vc)2

is the Lorentz factor, c is the speed of light.

Conservation of four-momentum

The conservation of the four-momentum yields two conservation laws for "classical" quantities:

  1. The total energy E = P0c is conserved.
  2. The classical three-momentum p is conserved.

Note that the invariant mass of a system of particles may be more than the sum of the particles' rest masses, since kinetic energy in the system center-of-mass frame and potential energy from forces between the particles contribute to the invariant mass. As an example, two particles with four-momenta (−5 GeV/c, 4 GeV/c, 0, 0) and (−5 GeV/c, −4 GeV/c, 0, 0) each have (rest) mass 3 GeV/c2 separately, but their total mass (the system mass) is 10 GeV/c2. If these particles were to collide and stick, the mass of the composite object would be 10 GeV/c2.

One practical application from particle physics of the conservation of the invariant mass involves combining the four-momenta P(A) and P(B) of two daughter particles produced in the decay of a heavier particle with four-momentum P(C) to find the mass of the heavier particle. Conservation of four-momentum gives P(C)μ = P(A)μ + P(B)μ, while the mass M of the heavier particle is given by −||P(C)||2 = M2c2. By measuring the energies and three-momenta of the daughter particles, one can reconstruct the invariant mass of the two-particle system, which must be equal to M. This technique is used, e.g., in experimental searches for Z' bosons at high-energy particle colliders, where the Z' boson would show up as a bump in the invariant mass spectrum of electron-positron or muon-antimuon pairs.

If an object's mass does not change, the Minkowski inner product of its four-momentum and corresponding four-acceleration Aμ is zero. The four-acceleration is proportional to the proper time derivative of the four-momentum divided by the particle's mass, so

PμAμ=ημνPμAν=ημνPμddτPνm=12mddτP2=12mddτ(m2c2)=0.

Canonical momentum in the presence of an electromagnetic potential

For a charged particle of charge q, moving in an electromagnetic field given by the electromagnetic four-potential:

(A0A1A2A3)=(ϕ/cAxAyAz)

where φ is the scalar potential and A = (Ax, Ay, Az) the vector potential, the "canonical" momentum four-vector is

Qμ=Pμ+qAμ.

This allows the potential energy from the charged particle in an electrostatic potential and the Lorentz force on the charged particle moving in a magnetic field to be incorporated in a compact way, in relativistic quantum mechanics.

See also

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534