Zero matrix

From formulasearchengine
Revision as of 02:41, 28 October 2013 by en>David Eppstein (Better sources)
Jump to navigation Jump to search
File:Diagram of a Markov blanket.svg
In a Bayesian network, the Markov blanket of node A includes its parents, children and the other parents of all of its children.

In machine learning, the Markov blanket for a node A in a Bayesian network is the set of nodes A composed of A's parents, its children, and its children's other parents. In a Markov network, the Markov blanket of a node is its set of neighboring nodes. A Markov blanket may also be denoted by MB(A).

Every set of nodes in the network is conditionally independent of A when conditioned on the set A, that is, when conditioned on the Markov blanket of the node A. The probability has the Markov property; formally, for distinct nodes A and B:

Pr(AA,B)=Pr(AA).

The Markov blanket of a node contains all the variables that shield the node from the rest of the network. This means that the Markov blanket of a node is the only knowledge needed to predict the behavior of that node. The term was coined by Pearl in 1988.[1]

In a Bayesian network, the values of the parents and children of a node evidently give information about that node; however, its children's parents also have to be included, because they can be used to explain away the node in question.

See also

Notes

  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534