Main Page

From formulasearchengine
Revision as of 00:13, 9 August 2014 by 10.68.16.65 (talk)
Jump to navigation Jump to search

29 yr old Orthopaedic Surgeon Grippo from Saint-Paul, spends time with interests including model railways, top property developers in singapore developers in singapore and dolls. Finished a cruise ship experience that included passing by Runic Stones and Church.

In mathematics, especially in order theory, a preorder or quasi-order is a binary relation that is reflexive and transitive. All partial orders and equivalence relations are preorders, but preorders are more general.

The name 'preorder' comes from the idea that preorders are 'almost' (partial) orders, but not quite; they're neither anti-symmetric nor symmetric. Because a preorder is a binary relation, the symbol ≤ can be used as the notational device for the relation. However, because they are not anti-symmetric, some of the ordinary intuition that a student may have with regards to the symbol ≤ may not apply. On the other hand, a pre-order can be used, in a straightforward fashion, to define a partial order and an equivalence relation. Doing so, however, is not always useful or worth-while, depending on the problem domain being studied.

In words, when ab, one may say that b covers a or that b precedes a, or that b reduces to a. Occasionally, the notation ← or is used instead of ≤.

To every preorder, there corresponds a directed graph, with elements of the set corresponding to vertices, and the order relation between pairs of elements corresponding to the directed edges between vertices. The converse is not true: most directed graphs are neither reflexive nor transitive. Note that, in general, the corresponding graphs may be cyclic graphs: preorders may have cycles in them. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph. In general, a preorder may have many disconnected components. The diamond lemma is an important result for certain kinds of preorders.

Many order theoretical definitions for partially ordered sets can be generalized to preorders, but the extra effort of generalization is rarely needed.Potter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park.

Formal definition

Consider some set P and a binary relation ≤ on P. Then ≤ is a preorder, or quasiorder, if it is reflexive and transitive, i.e., for all a, b and c in P, we have that:

aa (reflexivity)
if ab and bc then ac (transitivity)

Note that an alternate definition of preorder requires the relation to be irreflexive. However, as this article is examining preorders as a logical extension of non-strict partial orders, the current definition is more intuitive.

A set that is equipped with a preorder is called a preordered set (or proset).

If a preorder is also antisymmetric, that is, ab and ba implies a = b, then it is a partial order.

On the other hand, if it is symmetric, that is, if ab implies ba, then it is an equivalence relation.

A preorder which is preserved in all contexts (i.e. respected by all functions on P) is called a precongruence. A precongruence which is also symmetric (i.e. is an equivalence relation) is a congruence relation.

Equivalently, a preordered set P can be defined as a category with objects the elements of P, and each hom-set having at most one element (one for objects which are related, zero otherwise).

Alternately, a preordered set can be understood as an enriched category, enriched over the category 2 = (0→1).

Examples

  • The reachability relationship in any directed graph (possibly containing cycles) gives rise to a preorder, where x ≤ y in the preorder if and only if there is a path from x to y in the directed graph. Conversely, every preorder is the reachability relationship of a directed graph (for instance, the graph that has an edge from x to y for every pair (x, y) with x ≤ y). However, many different graphs may have the same reachability preorder as each other. In the same way, reachability of directed acyclic graphs, directed graphs with no cycles, gives rise to partially ordered sets (preorders satisfying an additional anti-symmetry property).
  • Every finite topological space gives rise to a preorder on its points, in which xy if and only if x belongs to every neighborhood of y, and every finite preorder can be formed as the specialization preorder of a topological space in this way. That is, there is a 1-to-1 correspondence between finite topologies and finite preorders. However, the relation between infinite topological spaces and their specialization preorders is not 1-to-1.
  • A net is a directed preorder, that is, each pair of elements has an upper bound. The definition of convergence via nets is important in topology, where preorders cannot be replaced by partially ordered sets without losing important features.
  • The relation defined by xy iff f(x)f(y), where f is a function into some preorder.
  • The relation defined by xy iff there exists some injection from x to y. Injection may be replaced by surjection, or any type of structure-preserving function, such as ring homomorphism, or permutation.
  • The embedding relation for countable total orderings.
  • The graph-minor relation in graph theory.
  • A category with at most one morphism between any pair of objects is a preorder. Such categories are called thin. In this sense, categories "generalize" preorders by allowing more than one relation between objects: each morphism is a distinct (named) preorder relation.

In computer science, one can find examples of the following preorders.

Example of a total preorder:

Uses

Preorders play a pivotal role in several situations:

Constructions

Every binary relation R on a set S can be extended to a preorder on S by taking the transitive closure and reflexive closure, R+=. The transitive closure indicates path connection in R: x R+ y if and only if there is an R-path from x to y.

Given a preorder on S one may define an equivalence relation ~ on S such that a ~ b if and only if a b and b a. (The resulting relation is reflexive since a preorder is reflexive, transitive by applying transitivity of the preorder twice, and symmetric by definition.)

Using this relation, it is possible to construct a partial order on the quotient set of the equivalence, S / ~, the set of all equivalence classes of ~. Note that if the preorder is R+=, S / ~ is the set of R-cycle equivalence classes: x ∈ [y] if and only if x = y or x is in an R-cycle with y. In any case, on S / ~ we can define [x] ≤ [y] if and only if x y. By the construction of ~, this definition is independent of the chosen representatives and the corresponding relation is indeed well-defined. It is readily verified that this yields a partially ordered set.

Conversely, from a partial order on a partition of a set S one can construct a preorder on S. There is a 1-to-1 correspondence between preorders and pairs (partition, partial order).

For a preorder "", a relation "<" can be defined as a < b if and only if (a b and not b a), or equivalently, using the equivalence relation introduced above, (a b and not a ~ b). It is a strict partial order; every strict partial order can be the result of such a construction. If the preorder is anti-symmetric, hence a partial order "≤", the equivalence is equality, so the relation "<" can also be defined as a < b if and only if (ab and ab).

(Alternatively, for a preorder "", a relation "<" can be defined as a < b if and only if (a b and ab). The result is the reflexive reduction of the preorder. However, if the preorder is not anti-symmetric the result is not transitive, and if it is, as we have seen, it is the same as before.)

Conversely we have a b if and only if a < b or a ~ b. This is the reason for using the notation ""; "≤" can be confusing for a preorder that is not anti-symmetric, it may suggest that ab implies that a < b or a = b.

Note that with this construction multiple preorders "" can give the same relation "<", so without more information, such as the equivalence relation, "" cannot be reconstructed from "<". Possible preorders include the following:

  • Define ab as a < b or a = b (i.e., take the reflexive closure of the relation). This gives the partial order associated with the strict partial order "<" through reflexive closure; in this case the equivalence is equality, so we don't need the notations and ~.
  • Define a b as "not b < a" (i.e., take the inverse complement of the relation), which corresponds to defining a ~ b as "neither a < b nor b < a"; these relations and ~ are in general not transitive; however, if they are, ~ is an equivalence; in that case "<" is a strict weak order. The resulting preorder is total, that is, a total preorder.

Number of preorders

Template:Number of relations

As explained above, there is a 1-to-1 correspondence between preorders and pairs (partition, partial order). Thus the number of preorders is the sum of the number of partial orders on every partition. For example:

  • for n=3:
    • 1 partition of 3, giving 1 preorder
    • 3 partitions of 2+1, giving 3 × 3 = 9 preorders
    • 1 partition of 1+1+1, giving 19 preorders
i.e. together 29 preorders.
  • for n=4:
    • 1 partition of 4, giving 1 preorder
    • 7 partitions with two classes (4 of 3+1 and 3 of 2+2), giving 7 × 3 = 21 preorders
    • 6 partitions of 2+1+1, giving 6 × 19 = 114 preorders
    • 1 partition of 1+1+1+1, giving 219 preorders
i.e. together 355 preorders.

Interval

For a b, the interval [a,b] is the set of points x satisfying a x and x b, also written a x b. It contains at least the points a and b. One may choose to extend the definition to all pairs (a,b). The extra intervals are all empty.

Using the corresponding strict relation "<", one can also define the interval (a,b) as the set of points x satisfying a < x and x < b, also written a < x < b. An open interval may be empty even if a < b.

Also [a,b) and (a,b] can be defined similarly.

See also

References

Template:Refbegin

  • Many property agents need to declare for the PIC grant in Singapore. However, not all of them know find out how to do the correct process for getting this PIC scheme from the IRAS. There are a number of steps that you need to do before your software can be approved.

    Naturally, you will have to pay a safety deposit and that is usually one month rent for annually of the settlement. That is the place your good religion deposit will likely be taken into account and will kind part or all of your security deposit. Anticipate to have a proportionate amount deducted out of your deposit if something is discovered to be damaged if you move out. It's best to you'll want to test the inventory drawn up by the owner, which can detail all objects in the property and their condition. If you happen to fail to notice any harm not already mentioned within the inventory before transferring in, you danger having to pay for it yourself.

    In case you are in search of an actual estate or Singapore property agent on-line, you simply should belief your intuition. It's because you do not know which agent is nice and which agent will not be. Carry out research on several brokers by looking out the internet. As soon as if you end up positive that a selected agent is dependable and reliable, you can choose to utilize his partnerise in finding you a home in Singapore. Most of the time, a property agent is taken into account to be good if he or she locations the contact data on his website. This may mean that the agent does not mind you calling them and asking them any questions relating to new properties in singapore in Singapore. After chatting with them you too can see them in their office after taking an appointment.

    Have handed an trade examination i.e Widespread Examination for House Brokers (CEHA) or Actual Property Agency (REA) examination, or equal; Exclusive brokers are extra keen to share listing information thus making certain the widest doable coverage inside the real estate community via Multiple Listings and Networking. Accepting a severe provide is simpler since your agent is totally conscious of all advertising activity related with your property. This reduces your having to check with a number of agents for some other offers. Price control is easily achieved. Paint work in good restore-discuss with your Property Marketing consultant if main works are still to be done. Softening in residential property prices proceed, led by 2.8 per cent decline within the index for Remainder of Central Region

    Once you place down the one per cent choice price to carry down a non-public property, it's important to accept its situation as it is whenever you move in – faulty air-con, choked rest room and all. Get round this by asking your agent to incorporate a ultimate inspection clause within the possibility-to-buy letter. HDB flat patrons routinely take pleasure in this security net. "There's a ultimate inspection of the property two days before the completion of all HDB transactions. If the air-con is defective, you can request the seller to repair it," says Kelvin.

    15.6.1 As the agent is an intermediary, generally, as soon as the principal and third party are introduced right into a contractual relationship, the agent drops out of the image, subject to any problems with remuneration or indemnification that he could have against the principal, and extra exceptionally, against the third occasion. Generally, agents are entitled to be indemnified for all liabilities reasonably incurred within the execution of the brokers´ authority.

    To achieve the very best outcomes, you must be always updated on market situations, including past transaction information and reliable projections. You could review and examine comparable homes that are currently available in the market, especially these which have been sold or not bought up to now six months. You'll be able to see a pattern of such report by clicking here It's essential to defend yourself in opposition to unscrupulous patrons. They are often very skilled in using highly unethical and manipulative techniques to try and lure you into a lure. That you must also protect your self, your loved ones, and personal belongings as you'll be serving many strangers in your home. Sign a listing itemizing of all of the objects provided by the proprietor, together with their situation. HSR Prime Recruiter 2010

Template:Refend

cs:Kvaziuspořádání da:Præordning de:Quasiordnung es:Conjunto preordenado fr:Pré-ordre it:Preordine he:קדם סדר pl:Praporządek ru:Предпорядок sk:Kváziusporiadanie uk:Передпорядок zh:预序关系