Concordant pair
In mathematics, Helly's selection theorem states that a sequence of functions that is locally of bounded total variation and uniformly bounded at a point has a convergent subsequence. In other words, it is a compactness theorem for the space BVloc. It is named for the Austrian mathematician Eduard Helly.
The theorem has applications throughout mathematical analysis. In probability theory, the result implies compactness of a tight family of measures.
Statement of the theorem
Let U be an open subset of the real line and let fn : U → R, n ∈ N, be a sequence of functions. Suppose that
- (fn) has uniformly bounded total variation on any W that is compactly embedded in U. That is, for all sets W ⊆ U with compact closure W̄ ⊆ U,
- where the derivative is taken in the sense of tempered distributions;
- and (fn) is uniformly bounded at a point. That is, for some t ∈ U, { fn(t) | n ∈ N } ⊆ R is a bounded set.
Then there exists a subsequence fnk, k ∈ N, of fn and a function f : U → R, locally of bounded variation, such that
- fnk converges to f pointwise;
- and fnk converges to f locally in L1 (see locally integrable function), i.e., for all W compactly embedded in U,
- and, for W compactly embedded in U,
Generalizations
There are many generalizations and refinements of Helly's theorem. The following theorem, for BV functions taking values in Banach spaces, is due to Barbu and Precupanu:
Let X be a reflexive, separable Hilbert space and let E be a closed, convex subset of X. Let Δ : X → [0, +∞) be positive-definite and homogeneous of degree one. Suppose that zn is a uniformly bounded sequence in BV([0, T]; X) with zn(t) ∈ E for all n ∈ N and t ∈ [0, T]. Then there exists a subsequence znk and functions δ, z ∈ BV([0, T]; X) such that
- for all t ∈ [0, T],
- and, for all t ∈ [0, T],
- and, for all 0 ≤ s < t ≤ T,
See also
References
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 Template:MathSciNet