Niccolò Fontana Tartaglia

From formulasearchengine
Revision as of 20:06, 22 November 2013 by en>Jack Greenmaven (Reverted 2 edits by 209.255.166.33 identified as test/vandalism using STiki)
Jump to navigation Jump to search

29 yr old Orthopaedic Surgeon Grippo from Saint-Paul, spends time with interests including model railways, top property developers in singapore developers in singapore and dolls. Finished a cruise ship experience that included passing by Runic Stones and Church.

In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function with domain the natural numbers, and in the context of topology, the range of this function is usually any topological space. However, in the context of topology, sequences do not fully encode all information about a function between topological spaces. In particular, the following two conditions are not equivalent in general for a map f between topological spaces X and Y:

  1. The map f is continuous
  2. Given any point x in X, and any sequence in X converging to x, the composition of f with this sequence converges to f(x)

It is true, however, that condition 1 implies condition 2 in the context of all spaces. The difficulty encountered when attempting to prove that condition 2 implies condition 1 lies in the fact that topological spaces are, in general, not first-countable. If the first-countability axiom were imposed on the topological spaces in question, the two above conditions would be equivalent. In particular, the two conditions are equivalent for metric spaces.

The purpose of the concept of a net, first introduced by E. H. Moore and H. L. Smith in 1922,[1] is to generalize the notion of a sequence so as to confirm the equivalence of the conditions (with "sequence" being replaced by "net" in condition 2). In particular, rather than being defined on a countable linearly ordered set, a net is defined on an arbitrary directed set. In particular, this allows theorems similar to that asserting the equivalence of condition 1 and condition 2, to hold in the context of topological spaces which do not necessarily have a countable or linearly ordered neighbourhood basis around a point. Therefore, while sequences do not encode sufficient information about functions between topological spaces, nets do because collections of open sets in topological spaces are much like directed sets in behaviour. The term "net" was coined by Kelley.[2][3]

Nets are one of the many tools used in topology to generalize certain concepts that may only be general enough in the context of metric spaces. A related notion, that of the filter, was developed in 1937 by Henri Cartan.

Definition

If X is a topological space, a net in X is a function from some directed set A to X.

If A is a directed set, we often write a net from A to X in the form (xα), which expresses the fact that the element α in A is mapped to the element xα in X.

Examples of nets

Every non-empty totally ordered set is directed. Therefore every function on such a set is a net. In particular, the natural numbers with the usual order form such a set, and a sequence is a function on the natural numbers, so every sequence is a net.

Another important example is as follows. Given a point x in a topological space, let Nx denote the set of all neighbourhoods containing x. Then Nx is a directed set, where the direction is given by reverse inclusion, so that ST if and only if S is contained in T. For S in Nx, let xS be a point in S. Then (xS) is a net. As S increases with respect to ≥, the points xS in the net are constrained to lie in decreasing neighbourhoods of x, so intuitively speaking, we are led to the idea that xS must tend towards x in some sense. We can make this limiting concept precise.

Limits of nets

If (xα) is a net from a directed set A into X, and if Y is a subset of X, then we say that (xα) is eventually in Y (or residually in Y) if there exists an α in A so that for every β in A with β ≥ α, the point xβ lies in Y.

If (xα) is a net in the topological space X, and x is an element of X, we say that the net converges towards x or has limit x and write

lim xα = x

if and only if

for every neighborhood U of x, (xα) is eventually in U.

Intuitively, this means that the values xα come and stay as close as we want to x for large enough α.

Note that the example net given above on the neighborhood system of a point x does indeed converge to x according to this definition.

Given a base for the topology, in order to prove convergence of a net it is necessary and sufficient to prove that there exists some point x, such that (xα) is eventually in all members of the base containing this putative limit.

Examples of limits of nets

Supplementary definitions

Let φ be a net on X based on the directed set D and let A be a subset of X, then φ is said to be frequently in (or cofinally in) A if for every α in D there exists some β ≥ α, β in D, so that φ(β) is in A.

A point x in X is said to be an accumulation point or cluster point of a net if (and only if) for every neighborhood U of x, the net is frequently in U.

A net φ on set X is called universal, or an ultranet if for every subset A of X, either φ is eventually in A or φ is eventually in X-A.

Examples

Sequence in a topological space:

A sequence (a1, a2, ...) in a topological space V can be considered a net in V defined on N.

The net is eventually in a subset Y of V if there exists an N in N such that for every nN, the point an is in Y.

We have limn an = L if and only if for every neighborhood Y of L, the net is eventually in Y.

The net is frequently in a subset Y of V if and only if for every N in N there exists some nN such that an is in Y, that is, if and only if infinitely many elements of the sequence are in Y. Thus a point y in V is a cluster point of the net if and only if every neighborhood Y of y contains infinitely many elements of the sequence.

Function from a metric space to a topological space:

Consider a function from a metric space M to a topological space V, and a point c of M. We direct the set M\{c} reversely according to distance from c, that is, the relation is "has at least the same distance to c as", so that "large enough" with respect to the relation means "close enough to c". The function ƒ is a net in V defined on M\{c}.

The net ƒ is eventually in a subset Y of V if there exists an a in M\{c} such that for every x in M\{c} with d(x,c) ≤ d(a,c), the point f(x) is in Y.

We have limxc ƒ(x) = L if and only if for every neighborhood Y of L, ƒ is eventually in Y.

The net ƒ is frequently in a subset Y of V if and only if for every a in M\{c} there exists some x in M\{c} with d(x,c) ≤ d(a,c) such that f(x) is in Y.

A point y in V is a cluster point of the net ƒ if and only if for every neighborhood Y of y, the net is frequently in Y.

Function from a well-ordered set to a topological space:

Consider a well-ordered set [0, c] with limit point c, and a function ƒ from [0, c) to a topological space V. This function is a net on [0, c).

It is eventually in a subset Y of V if there exists an a in [0, c) such that for every xa, the point f(x) is in Y.

We have limxc ƒ(x) = L if and only if for every neighborhood Y of L, ƒ is eventually in Y.

The net ƒ is frequently in a subset Y of V if and only if for every a in [0, c) there exists some x in [a, c) such that f(x) is in Y.

A point y in V is a cluster point of the net ƒ if and only if for every neighborhood Y of y, the net is frequently in Y.

The first example is a special case of this with c = ω.

See also ordinal-indexed sequence.

Properties

Virtually all concepts of topology can be rephrased in the language of nets and limits. This may be useful to guide the intuition since the notion of limit of a net is very similar to that of limit of a sequence. The following set of theorems and lemmas help cement that similarity:

  • A function ƒ:XY between topological spaces is continuous at the point x if and only if for every net (xα) with
lim xα = x
we have
lim ƒ(xα) = ƒ(x).
Note that this theorem is in general not true if we replace "net" by "sequence". We have to allow for more directed sets than just the natural numbers if X is not first-countable.
  • In general, a net in a space X can have more than one limit, but if X is a Hausdorff space, the limit of a net, if it exists, is unique. Conversely, if X is not Hausdorff, then there exists a net on X with two distinct limits. Thus the uniqueness of the limit is equivalent to the Hausdorff condition on the space, and indeed this may be taken as the definition. Note that this result depends on the directedness condition; a set indexed by a general preorder or partial order may have distinct limit points even in a Hausdorff space.
  • If U is a subset of X, then x is in the closure of U if and only if there exists a net (xα) with limit x and such that xα is in U for all α.
  • A subset A of X is closed if and only if, whenever (xα) is a net with elements in A and limit x, then x is in A.
  • The set of cluster points of a net is equal to the set of limits of its convergent subnets.
  • A net has a limit if and only if all of its subnets have limits. In that case, every limit of the net is also a limit of every subnet.
  • A net in the product space has a limit if and only if each projection has a limit. Symbolically, if (xα) is a net in the product X = πiXi, then it converges to x if and only if πi(xα)πi(x) for each i. Armed with this observation and the above characterization of compactness in terms on nets, one can give a slick proof of Tychonoff's theorem.
  • If ƒ:XY and (xα) is an ultranet on X, then (ƒ(xα)) is an ultranet on Y.

Cauchy nets

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. Library Technician Anton from Strathroy, has many passions that include r/c helicopters, property developers in condo new launch singapore and coin collecting. Finds the beauty in planing a trip to spots around the globe, recently only returning from Old Town of Corfu. In a metric space or uniform space, one can speak of Cauchy nets in much the same way as Cauchy sequences. The concept even generalises to Cauchy spaces.

Relation to filters

A filter is another idea in topology that allows for a general definition for convergence in general topological spaces. The two ideas are equivalent in the sense that they give the same concept of convergence.[4] More specifically, for every filter base an associated net can be constructed, and convergence of the filter base implies convergence of the associated net—and the other way around (for every net there is a filter base, and convergence of the net implies convergence of the filter base).[5] Therefore, any theorems that can be proven with one concept can be proven in the other.[5] For instance, continuity of a function from one topological space to the other can be characterized either by the convergence of a net in the domain implying the convergence of the corresponding net in the codomain, or by the same statement with filter bases.

Robert G. Bartle argues that despite their equivalence, it is useful to have both concepts.[5] He argues that nets are enough like sequences to make natural proofs and definitions in analogy to sequences, especially ones using sequential elements, such as is common in analysis, while filters are most useful in algebraic topology. In any case, he shows how the two can be used in combination to prove various theorems in general topology.

Limit superior

Limit superior and limit inferior of a net of real numbers can be defined in a similar manner as for sequences.[6][7][8] Some authors work even with more general structures than the real line, like complete lattices.[9]

For a net (xα)αI we put

lim supxα=limαIsupβαxβ=infαIsupβαxβ.

Limit superior of a net of real numbers has many properties analogous to the case of sequences, e.g.

lim sup(xα+yα)lim supxα+lim supyα,

where equality holds whenever one of the nets is convergent.

References

  1. One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting

    In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang

    Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules

    Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.

    A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running

    The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more

    There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang
  2. Template:Harv
  3. Megginson, p.143
  4. http://www.math.wichita.edu/~pparker/classes/handout/netfilt.pdf
  5. 5.0 5.1 5.2 R. G. Bartle, American Mathematical Monthly, Vol. 62, No. 8 (1955), pp. 551-557.
  6. Aliprantis-Border, p.32
  7. Megginson, p.217, p.221, Exercises 2.53-2.55
  8. Beer, p.2
  9. Schechter, Sections 7.43-7.47