Kepler orbit: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Jaxcp3
m →‎Johannes Kepler: missing space
 
en>Fgnievinski
→‎Orbital elements: there are other non-Keplerian orbital elements
Line 1: Line 1:
<br><br>It can utilize its Yahoo! The messenger to chat with other solitary or in its area or nonetheless solitary of other nations. Click on only Yahoo! Chat of its MY and of there can select of various chat rooms from various areas or about different interests. Look for for singles online dating websites and you will be offered with various chat rooms from solitary to select of.<br><br>Part of the procedure in [http://www.louisianafresh.com/member/200759/ www.geekdates.net] is the payment of a certain amount of charge in order for you to be a part of its applications as well as its actions. The services of geek dating are endless. [http://Data.gov.uk/data/search?q=Individuals Individuals] are paired together for a number of minutes and with the ring of some small bell, an additional switch is made. The 3 to ten moment discussion in between two people needs a short and direct introduction. No more beating around the bush.<br><br>If you are a Western man who seeks a Polish spouse, so you should spend a small time to discover about Polish ladies in term of relationship and relationship. They are beautiful women. In any case, if you are a single guy looking for for a Polish lady, then you can find her at online dating services.<br><br>When while in the vehicle with you sugar daddy appear at how you adore the car he drives. Absolutely nothing makes a Sweetener Daddy happier than for getting somebody speak about the vehicle. The more you consider the car the more you can actually drop the seed that you'd like a matching one precisely like his. In about a month or two you'll discover a brand new sugar kid car that matches an person's.<br><br>There is nothing that will turn off a woman quicker than a guy who seems to be full of himself. That is accurate for nerd dating as nicely as for dating in the genuine globe. Girls don't like to be around men who believe they are "all that and a bag of chips." They do like a guy who is confident but not arrogant, they like a guy who is fascinating, but not just intrigued in himself or intercourse.<br><br>Be generous in your compliments. In case you like something about a profile mention it. If it is the communication aspect then let the individual know. It certain goes a long way in opening doors to a new partnership.
'''X-ray Raman scattering''' (XRS) is [[x-ray scattering techniques|non-resonant inelastic scattering]] of [[x-ray]]s from [[core electron]]s.
It is analogous to [[Raman scattering]], which is a widely used tool in
optical spectroscopy, with the difference being that the wavelengths of the
exciting photons fall in the x-ray regime and the corresponding excitations
are from deep core electrons.
 
XRS is an element-specific [[spectroscopy|spectroscopic]] tool for studying the [[electron configuration|electronic structure]] of [[matter]]. In particular, it probes the excited-state [[density of states]] (DOS) of an atomic species in a sample.
<ref>{{cite book|last=Schülke|first=W|title=Electron dynamics studied by inelastic x-ray scattering|year=2007|publisher=Oxford University Press}}</ref>
 
== Description ==
 
XRS is an inelastic [[x-ray scattering techniques|x-ray scattering]] process, in which a high-energy x-ray photon gives energy to a core electron, exciting it to an unoccupied state. The process is in principle analogous to [[X-ray absorption spectroscopy|x-ray absorption]] (XAS), but the ''energy transfer'' plays the role of the x-ray photon ''energy absorbed'' in x-ray absorption, exactly as in
Raman scattering in optics vibrational low-energy excitations can be observed
by studying the spectrum of light scattered from a molecule.  
 
Because the energy (and therefore wavelength) of the probing x-ray can be chosen
freely and is usually in the hard x-ray regime, certain constraints
of soft x-rays in the studies of electronic structure of the material are
overcome. For example, soft x-ray studies may be surface sensitive and they require a vacuum environment. This makes studies of many substances, such as numerous liquids impossible using soft x-ray absorption. One of the most notable applications in which x-ray Raman scattering is superior to soft x-ray absorption is the study of soft x-ray absorption edges in [[high pressure]]. Whereas high-energy x-rays may pass through a high-pressure apparatus like a [[diamond anvil cell]] and reach the sample inside the cell, soft x-rays would be absorbed by the cell itself.
 
== History ==
 
In his report of finding of a new type of scattering, Sir [[Chandrasekhara Venkata Raman]] proposed that a similar effect should be found also in the x-ray regime. Around the same time, B. Davis and D. Mitchell reported in 1928 on the fine-structure of the scattered radiation from graphite and noted that they had lines that seemed to be in agreement with carbon K shell energy. Several researchers attempted similar experiments in the late 1920s and early 1930s but the results could not always be confirmed. Often the first unambiguous observations of the XRS effect is credited to K. Das Gupta (reported findings 1959) and Tadasu Suzuki (reported 1964). It was soon realized that the XRS peak in solids was broadened by the solid-state effects and it appeared as a band, with a shape similar to that of a XAS spectrum. The potential of the technique was limited until modern [[synchrotron light]] sources became available. This is due to the very small XRS probability of the incident photons, requiring radiation with
a very high [[Intensity (physics)|intensity]]. Today, the XRS technique is rapidly growing in importance. It can be used to study [[XANES|near-edge x-ray absorption fine structure]] (NEXAFS or XANES) as well as [[extended x-ray absorption fine structure]] (EXAFS).
 
== Brief theory of XRS ==
 
XRS belongs to the class of non-resonant inelastic x-ray scattering, which has a [[Cross section (physics)|cross section]] of
 
:<math>{d^2 \sigma \over d \Omega d E}= ({ d \sigma \over d \Omega })_{\rm Th} \times S(q,E)</math>.
 
Here, <math>(d \sigma / d \Omega )_{\rm Th}</math> is the [[Thomson scattering|Thomson cross section]], which signifies that the scattering is that of electromagnetic waves from electrons. The physics of the system under study is buried in the ''dynamic structure factor'' <math>S(q,E)</math>, which is a function of momentum transfer <math>q</math> and energy transfer <math>E</math>. The dynamic structure factor contains all non-resonant electronic excitations, including not only the core-electron excitations observed in XRS but also e.g. [[plasmon]]s, the collective fluctuations of [[valence electron]]s, and [[Compton scattering]].
 
== Similarity to x-ray absorption ==
It was shown by Yukio Mizuno and Yoshihiro Ohmura in 1967 that
at small momentum transfers <math>q</math> the XRS contribution of
the dynamic structure factor is
proportional to the x-ray absorption spectrum. The main difference is that
while the polarization vector of light couples to momentum of the
absorbing electron in XAS, in XRS the momentum of the incident photon
couples to the charge of the electron. Because of this, the momentum transfer
of XRS plays the role of photon polarization of XAS.
 
==References==
{{Reflist}}
 
== External links ==
* [http://www.lightsources.org/ Synchrotron radiation sources worldwide]
 
[[Category:X-ray scattering]]
[[Category:Spectroscopy]]

Revision as of 18:08, 27 December 2013

X-ray Raman scattering (XRS) is non-resonant inelastic scattering of x-rays from core electrons. It is analogous to Raman scattering, which is a widely used tool in optical spectroscopy, with the difference being that the wavelengths of the exciting photons fall in the x-ray regime and the corresponding excitations are from deep core electrons.

XRS is an element-specific spectroscopic tool for studying the electronic structure of matter. In particular, it probes the excited-state density of states (DOS) of an atomic species in a sample. [1]

Description

XRS is an inelastic x-ray scattering process, in which a high-energy x-ray photon gives energy to a core electron, exciting it to an unoccupied state. The process is in principle analogous to x-ray absorption (XAS), but the energy transfer plays the role of the x-ray photon energy absorbed in x-ray absorption, exactly as in Raman scattering in optics vibrational low-energy excitations can be observed by studying the spectrum of light scattered from a molecule.

Because the energy (and therefore wavelength) of the probing x-ray can be chosen freely and is usually in the hard x-ray regime, certain constraints of soft x-rays in the studies of electronic structure of the material are overcome. For example, soft x-ray studies may be surface sensitive and they require a vacuum environment. This makes studies of many substances, such as numerous liquids impossible using soft x-ray absorption. One of the most notable applications in which x-ray Raman scattering is superior to soft x-ray absorption is the study of soft x-ray absorption edges in high pressure. Whereas high-energy x-rays may pass through a high-pressure apparatus like a diamond anvil cell and reach the sample inside the cell, soft x-rays would be absorbed by the cell itself.

History

In his report of finding of a new type of scattering, Sir Chandrasekhara Venkata Raman proposed that a similar effect should be found also in the x-ray regime. Around the same time, B. Davis and D. Mitchell reported in 1928 on the fine-structure of the scattered radiation from graphite and noted that they had lines that seemed to be in agreement with carbon K shell energy. Several researchers attempted similar experiments in the late 1920s and early 1930s but the results could not always be confirmed. Often the first unambiguous observations of the XRS effect is credited to K. Das Gupta (reported findings 1959) and Tadasu Suzuki (reported 1964). It was soon realized that the XRS peak in solids was broadened by the solid-state effects and it appeared as a band, with a shape similar to that of a XAS spectrum. The potential of the technique was limited until modern synchrotron light sources became available. This is due to the very small XRS probability of the incident photons, requiring radiation with a very high intensity. Today, the XRS technique is rapidly growing in importance. It can be used to study near-edge x-ray absorption fine structure (NEXAFS or XANES) as well as extended x-ray absorption fine structure (EXAFS).

Brief theory of XRS

XRS belongs to the class of non-resonant inelastic x-ray scattering, which has a cross section of

.

Here, is the Thomson cross section, which signifies that the scattering is that of electromagnetic waves from electrons. The physics of the system under study is buried in the dynamic structure factor , which is a function of momentum transfer and energy transfer . The dynamic structure factor contains all non-resonant electronic excitations, including not only the core-electron excitations observed in XRS but also e.g. plasmons, the collective fluctuations of valence electrons, and Compton scattering.

Similarity to x-ray absorption

It was shown by Yukio Mizuno and Yoshihiro Ohmura in 1967 that at small momentum transfers the XRS contribution of the dynamic structure factor is proportional to the x-ray absorption spectrum. The main difference is that while the polarization vector of light couples to momentum of the absorbing electron in XAS, in XRS the momentum of the incident photon couples to the charge of the electron. Because of this, the momentum transfer of XRS plays the role of photon polarization of XAS.

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534