Ray transfer matrix analysis

From formulasearchengine
Jump to navigation Jump to search

Genital herpes is a kind of sexually transmitted disease that certain becomes through sexual or oral connection with someone else that is afflicted by the viral disorder. Oral herpes requires occasional eruptions of fever blisters" round the mouth Figure 02 Also known as cold sores" or fever blisters," characteristic herpes lesions often appear around the mouth sometimes of illness, after sunlight or wind publicity, during menstruation, or with mental stress.

Though statistical numbers aren't nearly where they should be, increasing numbers of people are arriving at various clinics regarding the herpes symptoms also to have themselves and their companions treated.

Because symptoms may be recognised incorrectly as skin irritation or something else, a partner can't be determined by the partner with herpes to constantly find out when he or she is contagious. Some who contract herpes are symptom-no cost, others have just one breakout, and still others have standard bouts of symptoms.

Similarly, careful hand washing should be practiced to avoid the virus from spreading to other parts of the body, especially the eye and mouth. If you think you have already been exposed or show signs of herpes infection, see your medical provider. Prompt qualified diagnosis may boost your chances of responding to a prescription drugs like acyclovir that decreases the duration and severity of a short bout of symptoms.

HSV type 1 is the herpes virus that is usually responsible for cold sores of the mouth, the so-referred to as " fever blisters." You get HSV-1 by coming into contact with the saliva of an contaminated person.

If you are you looking for more information regarding herpes symptoms oral pictures look into our own web page. Name: Jodi Junker
My age: 32
Country: Netherlands
Home town: Oudkarspel
Post code: 1724 Xg
Street: Waterlelie 22

my page - www.hostgator1centcoupon.info

In machine learning, the perceptron is an algorithm for supervised classification of an input into one of several possible non-binary outputs. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that it processes elements in the training set one at a time.

The perceptron algorithm was invented in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt.[1]

Definition

The perceptron is a binary classifier which maps its input (a real-valued vector) to an output value (a single binary value):

where is a vector of real-valued weights, is the dot product (which here computes a weighted sum), and is the 'bias', a constant term that does not depend on any input value.

The value of (0 or 1) is used to classify as either a positive or a negative instance, in the case of a binary classification problem. If is negative, then the weighted combination of inputs must produce a positive value greater than in order to push the classifier neuron over the 0 threshold. Spatially, the bias alters the position (though not the orientation) of the decision boundary. The perceptron learning algorithm does not terminate if the learning set is not linearly separable. If the vectors are not linearly separable learning will never reach a point where all vectors are classified properly. The most famous example of the perceptron's inability to solve problems with linearly nonseparable vectors is the Boolean exclusive-or problem. The solution spaces of decision boundaries for all binary functions and learning behaviors are studied in the reference.[2]

In the context of artificial neural networks, a perceptron is an artificial neuron using the Heaviside step function as the activation function. The perceptron algorithm is also termed the single-layer perceptron, to distinguish it from a multilayer perceptron, which is a misnomer for a more complicated neural network. As a linear classifier, the single-layer perceptron is the simplest feedforward neural network.

Learning algorithm

Below is an example of a learning algorithm for a (single-layer) perceptron. For multilayer perceptrons, where a hidden layer exists, more sophisticated algorithms such as backpropagation must be used. Alternatively, methods such as the delta rule can be used if the function is non-linear and differentiable, although the one below will work as well.

When multiple perceptrons are combined in an artificial neural network, each output neuron operates independently of all the others; thus, learning each output can be considered in isolation.

Definitions

We first define some variables:

We show the values of the nodes as follows:

To represent the weights:

To show the time-dependence of , we use:

Too high a learning rate makes the perceptron periodically oscillate around the solution unless additional steps are taken.

The appropriate weights are applied to the inputs, and the resulting weighted sum passed to a function that produces the output y.

Steps

1. Initialise the weights and the threshold. Weights may be initialised to 0 or to a small random value. In the example below, we use 0.

2. For each example in our training set , perform the following steps over the input and desired output :

2a. Calculate the actual output:
2b. Update the weights:
, for all nodes .

3. For offline learning, the step 2 may be repeated until the iteration error is less than a user-specified error threshold , or a predetermined number of iterations have been completed.

The algorithm updates the weights after steps 2a and 2b. These weights are immediately applied to a pair in the training set, and subsequently updated, rather than waiting until all pairs in the training set have undergone these steps.

Convergence

The perceptron is a linear classifier, therefore it will never get to the state with all the input vectors classified correctly if the training set is not linearly separable, i.e. if the positive examples can not be separated from the negative examples by a hyperplane.

But if the training set is linearly separable, then the perceptron is guaranteed to converge, and there is an upper bound on the number of times the perceptron will adjust its weights during the training.

Suppose that the input vectors from the two classes can be separated by a hyperplane with a margin , i.e. there exists a weight vector , and a bias term such that for all and for all . And also let denote the maximum norm of an input vector. Novikoff (1962) proved that in this case the perceptron algorithm converges after making updates. The idea of the proof is that the weight vector is always adjusted by a bounded amount in a direction that it has a negative dot product with, and thus can be bounded above by where t is the number of changes to the weight vector. But it can also be bounded below by because if there exists an (unknown) satisfactory weight vector, then every change makes progress in this (unknown) direction by a positive amount that depends only on the input vector.

The decision boundary of a perceptron is invariant with respect to scaling of the weight vector; that is, a perceptron trained with initial weight vector and learning rate behaves identically to a perceptron trained with initial weight vector and learning rate 1. Thus, since the initial weights become irrelevant with increasing number of iterations, the learning rate does not matter in the case of the perceptron and is usually just set to 1.

Variants

The pocket algorithm with ratchet (Gallant, 1990) solves the stability problem of perceptron learning by keeping the best solution seen so far "in its pocket". The pocket algorithm then returns the solution in the pocket, rather than the last solution. It can be used also for non-separable data sets, where the aim is to find a perceptron with a small number of misclassifications.

In separable problems, perceptron training can also aim at finding the largest separating margin between the classes. The so-called perceptron of optimal stability can be determined by means of iterative training and optimization schemes, such as the Min-Over algorithm (Krauth and Mezard, 1987)[3] or the AdaTron (Anlauf and Biehl, 1989)) .[4] AdaTron uses the fact that the corresponding quadratic optimization problem is convex. The perceptron of optimal stability, together with the kernel trick, are the conceptual foundations of the support vector machine.

The -perceptron further used a pre-processing layer of fixed random weights, with thresholded output units. This enabled the perceptron to classify analogue patterns, by projecting them into a binary space. In fact, for a projection space of sufficiently high dimension, patterns can become linearly separable.

For example, consider the case of having to classify data into two classes. Here is a small such data set, consisting of two points coming from two Gaussian distributions.

A linear classifier can only separate points with a hyperplane, so no linear classifier can classify all the points here perfectly. On the other hand, the data can be projected into a large number of dimensions. In our example, a random matrix was used to project the data linearly to a 1000-dimensional space; then each resulting data point was transformed through the hyperbolic tangent function. A linear classifier can then separate the data, as shown in the third figure. However the data may still not be completely separable in this space, in which the perceptron algorithm would not converge. In the example shown, stochastic steepest gradient descent was used to adapt the parameters.

Another way to solve nonlinear problems without using multiple layers is to use higher order networks (sigma-pi unit). In this type of network, each element in the input vector is extended with each pairwise combination of multiplied inputs (second order). This can be extended to an n-order network.

It should be kept in mind, however, that the best classifier is not necessarily that which classifies all the training data perfectly. Indeed, if we had the prior constraint that the data come from equi-variant Gaussian distributions, the linear separation in the input space is optimal.

Other linear classification algorithms include Winnow, support vector machine and logistic regression.

Example

A perceptron learns to perform a binary NAND function on inputs and .

Inputs: , , , with input held constant at 1.

Threshold (): 0.5

Bias (): 0

Learning rate (): 0.1

Training set, consisting of four samples:

In the following, the final weights of one iteration become the initial weights of the next. Each cycle over all the samples in the training set is demarcated with heavy lines.

Input Initial weights Output Error Correction Final weights
Sensor values Desired output Per sensor Sum Network
if then 1, else 0
1 0 0 1 0 0 0 0 0 0 0 0 1 +0.1 0.1 0 0
1 0 1 1 0.1 0 0 0.1 0 0 0.1 0 1 +0.1 0.2 0 0.1
1 1 0 1 0.2 0 0.1 0.2 0 0 0.2 0 1 +0.1 0.3 0.1 0.1
1 1 1 0 0.3 0.1 0.1 0.3 0.1 0.1 0.5 0 0 0 0.3 0.1 0.1
1 0 0 1 0.3 0.1 0.1 0.3 0 0 0.3 0 1 +0.1 0.4 0.1 0.1
1 0 1 1 0.4 0.1 0.1 0.4 0 0.1 0.5 0 1 +0.1 0.5 0.1 0.2
1 1 0 1 0.5 0.1 0.2 0.5 0.1 0 0.6 1 0 0 0.5 0.1 0.2
1 1 1 0 0.5 0.1 0.2 0.5 0.1 0.2 0.8 1 -1 -0.1 0.4 0 0.1
1 0 0 1 0.4 0 0.1 0.4 0 0 0.4 0 1 +0.1 0.5 0 0.1
1 0 1 1 0.5 0 0.1 0.5 0 0.1 0.6 1 0 0 0.5 0 0.1
1 1 0 1 0.5 0 0.1 0.5 0 0 0.5 0 1 +0.1 0.6 0.1 0.1
1 1 1 0 0.6 0.1 0.1 0.6 0.1 0.1 0.8 1 -1 -0.1 0.5 0 0
1 0 0 1 0.5 0 0 0.5 0 0 0.5 0 1 +0.1 0.6 0 0
1 0 1 1 0.6 0 0 0.6 0 0 0.6 1 0 0 0.6 0 0
1 1 0 1 0.6 0 0 0.6 0 0 0.6 1 0 0 0.6 0 0
1 1 1 0 0.6 0 0 0.6 0 0 0.6 1 -1 -0.1 0.5 -0.1 -0.1
1 0 0 1 0.5 -0.1 -0.1 0.5 0 0 0.5 0 1 +0.1 0.6 -0.1 -0.1
1 0 1 1 0.6 -0.1 -0.1 0.6 0 -0.1 0.5 0 1 +0.1 0.7 -0.1 0
1 1 0 1 0.7 -0.1 0 0.7 -0.1 0 0.6 1 0 0 0.7 -0.1 0
1 1 1 0 0.7 -0.1 0 0.7 -0.1 0 0.6 1 -1 -0.1 0.6 -0.2 -0.1
1 0 0 1 0.6 -0.2 -0.1 0.6 0 0 0.6 1 0 0 0.6 -0.2 -0.1
1 0 1 1 0.6 -0.2 -0.1 0.6 0 -0.1 0.5 0 1 +0.1 0.7 -0.2 0
1 1 0 1 0.7 -0.2 0 0.7 -0.2 0 0.5 0 1 +0.1 0.8 -0.1 0
1 1 1 0 0.8 -0.1 0 0.8 -0.1 0 0.7 1 -1 -0.1 0.7 -0.2 -0.1
1 0 0 1 0.7 -0.2 -0.1 0.7 0 0 0.7 1 0 0 0.7 -0.2 -0.1
1 0 1 1 0.7 -0.2 -0.1 0.7 0 -0.1 0.6 1 0 0 0.7 -0.2 -0.1
1 1 0 1 0.7 -0.2 -0.1 0.7 -0.2 0 0.5 0 1 +0.1 0.8 -0.1 -0.1
1 1 1 0 0.8 -0.1 -0.1 0.8 -0.1 -0.1 0.6 1 -1 -0.1 0.7 -0.2 -0.2
1 0 0 1 0.7 -0.2 -0.2 0.7 0 0 0.7 1 0 0 0.7 -0.2 -0.2
1 0 1 1 0.7 -0.2 -0.2 0.7 0 -0.2 0.5 0 1 +0.1 0.8 -0.2 -0.1
1 1 0 1 0.8 -0.2 -0.1 0.8 -0.2 0 0.6 1 0 0 0.8 -0.2 -0.1
1 1 1 0 0.8 -0.2 -0.1 0.8 -0.2 -0.1 0.5 0 0 0 0.8 -0.2 -0.1
1 0 0 1 0.8 -0.2 -0.1 0.8 0 0 0.8 1 0 0 0.8 -0.2 -0.1
1 0 1 1 0.8 -0.2 -0.1 0.8 0 -0.1 0.7 1 0 0 0.8 -0.2 -0.1

This example can be implemented in the following Python code.

threshold = 0.5
learning_rate = 0.1
weights = [0, 0, 0]
training_set = [((1, 0, 0), 1), ((1, 0, 1), 1), ((1, 1, 0), 1), ((1, 1, 1), 0)]

def dot_product(values, weights):
    return sum(value * weight for value, weight in zip(values, weights))

while True:
    print('-' * 60)
    error_count = 0
    for input_vector, desired_output in training_set:
        print(weights)
        result = dot_product(input_vector, weights) > threshold
        error = desired_output - result
        if error != 0:
            error_count += 1
            for index, value in enumerate(input_vector):
                weights[index] += learning_rate * error * value
    if error_count == 0:
        break

Multiclass perceptron

Like most other techniques for training linear classifiers, the perceptron generalizes naturally to multiclass classification. Here, the input and the output are drawn from arbitrary sets. A feature representation function maps each possible input/output pair to a finite-dimensional real-valued feature vector. As before, the feature vector is multiplied by a weight vector , but now the resulting score is used to choose among many possible outputs:

Learning again iterates over the examples, predicting an output for each, leaving the weights unchanged when the predicted output matches the target, and changing them when it does not. The update becomes:

This multiclass formulation reduces to the original perceptron when is a real-valued vector, is chosen from , and .

For certain problems, input/output representations and features can be chosen so that can be found efficiently even though is chosen from a very large or even infinite set.

In recent years, perceptron training has become popular in the field of natural language processing for such tasks as part-of-speech tagging and syntactic parsing (Collins, 2002).

History

See also: History of artificial intelligence, AI winter and Frank Rosenblatt

Although the perceptron initially seemed promising, it was eventually proved that perceptrons could not be trained to recognise many classes of patterns. This led to the field of neural network research stagnating for many years, before it was recognised that a feedforward neural network with two or more layers (also called a multilayer perceptron) had far greater processing power than perceptrons with one layer (also called a single layer perceptron). Single layer perceptrons are only capable of learning linearly separable patterns; in 1969 a famous book entitled Perceptrons by Marvin Minsky and Seymour Papert showed that it was impossible for these classes of network to learn an XOR function. It is often believed that they also conjectured (incorrectly) that a similar result would hold for a multi-layer perceptron network. However, this is not true, as both Minsky and Papert already knew that multi-layer perceptrons were capable of producing an XOR Function. (See the page on Perceptrons for more information.) Three years later Stephen Grossberg published a series of papers introducing networks capable of modelling differential, contrast-enhancing and XOR functions. (The papers were published in 1972 and 1973, see e.g.: Grossberg, Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52 (1973), 213-257, online [1]). Nevertheless the often-miscited Minsky/Papert text caused a significant decline in interest and funding of neural network research. It took ten more years until neural network research experienced a resurgence in the 1980s. This text was reprinted in 1987 as "Perceptrons - Expanded Edition" where some errors in the original text are shown and corrected.

The kernel Perceptron algorithm was already introduced in 1964 by Aizerman et al.[5] Margin bounds guarantees were given for the Perceptron algorithm in the general non-separable case first by Freund and Schapire (1998),[6] and more recently by Mohri and Rostamizadeh (2013) who extend previous results and give new L1 bounds.[7]

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  • Aizerman, M. A. and Braverman, E. M. and Lev I. Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.
  • Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386–408. 21 year-old Glazier James Grippo from Edam, enjoys hang gliding, industrial property developers in singapore developers in singapore and camping. Finds the entire world an motivating place we have spent 4 months at Alejandro de Humboldt National Park..
  • Rosenblatt, Frank (1962), Principles of Neurodynamics. Washington, DC:Spartan Books.
  • Minsky M. L. and Papert S. A. 1969. Perceptrons. Cambridge, MA: MIT Press.
  • Freund, Y. and Schapire, R. E. 1998. Large margin classification using the perceptron algorithm. In Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT' 98). ACM Press.
  • Freund, Y. and Schapire, R. E. 1999. Large margin classification using the perceptron algorithm. In Machine Learning 37(3):277-296, 1999.
  • Gallant, S. I. (1990). Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, vol. 1, no. 2, pp. 179–191.
  • Mohri, Mehryar and Rostamizadeh, Afshin (2013). Perceptron Mistake Bounds arXiv:1305.0208, 2013.
  • Novikoff, A. B. (1962). On convergence proofs on perceptrons. Symposium on the Mathematical Theory of Automata, 12, 615-622. Polytechnic Institute of Brooklyn.
  • Widrow, B., Lehr, M.A., "30 years of Adaptive Neural Networks: Perceptron, Madaline, and Backpropagation," Proc. IEEE, vol 78, no 9, pp. 1415–1442, (1990).
  • Collins, M. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with the perceptron algorithm in Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP '02).
  • Yin, Hongfeng (1996), Perceptron-Based Algorithms and Analysis, Spectrum Library, Concordia University, Canada

External links

Real Estate Agent Renaldo Lester from Saint-Jean-Chrysostome, has several hobbies which include leathercrafting, property developers in singapore apartment for sale, this contact form, and crochet. Loves to see new cities and places like Ruins of Loropéni.

  1. Rosenblatt, Frank (1957), The Perceptron--a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Laboratory.
  2. One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting

    In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang

    Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules

    Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.

    A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running

    The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more

    There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang
  3. W. Krauth and M. Mezard. Learning algorithms with optimal stabilty in neural networks. J. of Physics A: Math. Gen. 20: L745-L752 (1987)
  4. J.K. Anlauf and M. Biehl. The AdaTron: an Adaptive Perceptron algorithm. Europhysics Letters 10: 687-692 (1989)
  5. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964
  6. Freund, Y. and Schapire, R. E. 1998. Large margin classification using the perceptron algorithm. In Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT' 98). ACM Press.
  7. Mohri, Mehryar and Rostamizadeh, Afshin (2013). Perceptron Mistake Bounds arXiv:1305.0208, 2013.