Relativistic beaming: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Shawn Worthington Laser Plasma
 
en>Werieth
m clean up using AWB
Line 1: Line 1:
Surveying or Spatial Technology Technician Garry Lafave from Stanstead, has interests including cycling, free coins fifa 14 hack and sketching.  that included going to L'viv – the Ensemble of the Historic Centre.<br><br>My website [https://youtube.com/watch?v=HSoNAvTIeEc fifa 14 Hack tool]
{{About|eccentricity in astrodynamics||Eccentricity (disambiguation)}}
[[File:Kepler orbits.svg|thumb|An elliptic Kepler orbit with an eccentricity of 0.7 (red ellipse), a parabolic Kepler orbit (green) and a hyperbolic Kepler orbit with an eccentricity of 1.3 (blue outer line)]]
 
The '''orbital eccentricity''' of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect [[circle]]. A value of 0 is a circular orbit, values between 0 and 1 form an [[ellipse|elliptical]] orbit, 1 is a [[parabola|parabolic]] [[escape orbit]], and greater than 1 is a [[hyperbola]]. The term derives its name from the parameters of [[conic section]]s, as every [[Kepler orbit]] is a conic section. It is normally used for the isolated [[two-body problem]], but extensions exist for objects following a [[klemperer rosette|rosette]] orbit through the galaxy.
 
==Definition==
In a [[two-body problem]] with inverse-square-law force, every [[orbit]] is a Kepler orbit. The [[eccentricity (mathematics)|eccentricity]] of this [[Kepler orbit]] is a non-negative number that defines its shape.
 
The eccentricity may take the following values:
*[[circular orbit]]: <math>e=0\,\!</math>
*[[elliptic orbit]]: <math>0<e<1\,\!</math> (see [[Ellipse]])
*[[parabolic trajectory]]: <math>e=1\,\!</math> (see [[Parabola]])
*[[hyperbolic trajectory]]: <math>e>1\,\!</math>  (see [[Hyperbola]])
 
The eccentricity <math>e</math> is given by
 
:<math>
e = \sqrt{1 + \frac{2 E L^{2}}{m_\text{red} \alpha ^{2}}}
</math>
 
where ''E'' is the total [[orbital energy]], <math>L</math> is the [[angular momentum]], <math>m_\text{red}</math> is the [[reduced mass]]. and <math>\alpha</math> the coefficient of the inverse-square law [[central force]] such as [[gravity]] or [[electrostatics]] in [[classical physics]]:
 
:<math>
F = \frac{\alpha}{r^{2}}
</math>
 
(<math>\alpha</math> is negative for an attractive force, positive for a repulsive one) (see also [[Kepler problem]]).
 
or in the case of a gravitational force:
:<math>
e = \sqrt{1 + \frac{2 \epsilon h^{2}}{\mu^2}}
</math>
 
where <math>\epsilon</math> is the [[specific orbital energy]] (total energy divided by the reduced mass), <math>
\mu</math> the [[standard gravitational parameter]] based on the total mass, and <math>h</math> the [[specific relative angular momentum]] ([[angular momentum]] divided by the reduced mass).
 
For values of ''e'' from 0 to 1 the orbit's shape is an increasingly elongated (or flatter) ellipse; for values of ''e'' from 1 to infinity the orbit is a hyperbola branch making a total turn of 2 [[arccsc]] ''e'', decreasing from 180 to 0 degrees. The limit case between an ellipse and a hyperbola, when ''e''  equals 1, is parabola.
 
Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while ''e'' tends to 1 (or in the parabolic case, remains 1).
 
For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable.
 
For elliptical orbits, a simple proof shows that arcsin(<math>e</math>) yields the projection angle of a perfect circle to an [[ellipse]] of eccentricity <math>e</math>.  For example, to view the eccentricity of the planet Mercury (<math>e</math>=0.2056), one must simply calculate the [[inverse trigonometric functions|inverse sine]] to find the projection angle of 11.86 degrees.  Next, tilt any circular object (such as a coffee mug viewed from the top) by that angle and the apparent [[ellipse]] projected to your eye will be of that same eccentricity.
 
==Etymology==
From Medieval Latin ''eccentricus'', derived from Greek ''ekkentros'' "out of the center", from ''ek''-, ''ex''- "out of" + ''kentron'' "center". Eccentric first appeared in English in 1551, with the definition "a circle in which the earth, sun. etc. deviates from its center." Five years later, in 1556, an adjective form of the word was added.
 
==Calculation==
The '''eccentricity''' of an [[orbit]] can be calculated from the [[orbital state vectors]] as the [[magnitude (mathematics)|magnitude]] of the [[eccentricity vector]]:
:<math>e= \left | \mathbf{e} \right |</math>
where:
*<math>\mathbf{e}\,\!</math> is the [[eccentricity vector]].
 
For [[elliptical orbit]]s it can also be calculated from the [[periapsis]] and [[apoapsis]] since <math>r_p=a(1-e)</math> and <math>r_a=a(1+e)</math>, where <math>a</math> is the [[semimajor axis]].
:<math>e={{r_a-r_p}\over{r_a+r_p}}</math>
::<math>=1-\frac{2}{(r_a/r_p)+1}</math>
where:
*<math>r_a\,\!</math> is the radius at [[apoapsis]] (i.e., the farthest distance of the orbit to the [[center of mass]] of the system, which is a [[focus (geometry)|focus]] of the ellipse).
*<math>r_p\,\!</math> is the radius at [[periapsis]] (the closest distance).
 
The eccentricity of an elliptical orbit can also be used to obtain the ratio of the [[periapsis]] to the [[apoapsis]]:
 
:<math>{{r_p}\over{r_a}}={{1-e}\over{1+e}}</math>
 
==Examples==
[[File:Eccentricity rocky planets.jpg|500px|thumb|right|[http://www.orbitsimulator.com/gravity/articles/what.html Gravity Simulator] plot of the changing orbital eccentricity of [[Mercury (planet)|Mercury]], [[Venus]], [[Earth]], and [[Mars]] over the next 50,000 years. The 0 point on this plot is the year 2007.]]
The eccentricity of the [[Earth]]'s orbit is currently about 0.0167; the Earth's orbit is nearly circular. Over hundreds of thousands of years, the eccentricity of the Earth's orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets (see [http://www.museum.state.il.us/exhibits/ice_ages/eccentricity_graph.html graph]).<ref name="Berger1991">{{cite web
  |date=1991 (old, but published)
  |title=Graph of the eccentricity of the Earth's orbit
  |publisher=Illinois State Museum (Insolation values for the climate of the last 10 million years)
  |author=A. Berger and M.F. Loutre
  |url=http://www.museum.state.il.us/exhibits/ice_ages/eccentricity_graph.html
  |accessdate=2009-12-17}}</ref>
 
[[Mercury (planet)|Mercury]] has the greatest orbital eccentricity of any planet in the Solar System (e=0.2056). [[2006 definition of planet|Before 2006]], [[Pluto]] was considered to be the planet with the most eccentric orbit (e=0.248). The [[Moon]]'s value is 0.0549. For the values for all planets and other celestial bodies in one table, see ''[[List of gravitationally rounded objects of the Solar System]]''.
 
Most of the Solar System's [[asteroid]]s have orbital eccentricities between 0 and 0.35 with an average value of 0.17.<ref>[http://filer.case.edu/sjr16/advanced/asteroid.html Asteroids<!-- Bot-generated title -->]</ref> Their comparatively high eccentricities are probably due to the influence of [[Jupiter]] and to past collisions.
 
The eccentricity of [[comet]]s is most often close to 1. [[Periodic comet]]s have highly eccentric [[elliptical orbit]]s with eccentricities just below 1; [[Halley's Comet]]'s elliptical orbit, for example, has a value of 0.967. Non-periodic comets follow near-[[parabolic orbit]]s and thus have eccentricities even closer to 1. Examples include [[Comet Hale–Bopp]] with a value of 0.995<ref name=Hale-Bopp-jpl/> and comet [[C/2006 P1]] (McNaught) with a value of 1.000019.<ref name=McNaught-jpl>{{cite web
  |date=2007-07-11 last obs
  |title=JPL Small-Body Database Browser: C/2006 P1 (McNaught)
  |url=http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=C/2006+P1
  |accessdate=2009-12-17}}</ref> As Hale–Bopp's value is less than 1, its orbit is elliptical and will in fact return.<ref name=Hale-Bopp-jpl>{{cite web
  |date=2007-10-22 last obs
  |title=JPL Small-Body Database Browser: C/1995 O1 (Hale-Bopp)
  |url=http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=Hale-Bopp
  |accessdate=2008-12-05}}</ref> Comet McNaught has a [[hyperbolic orbit]] while within the influence of the planets, but is still bound to the Sun with an orbital period of about 10<sup>5</sup> years.<ref name="Perth">{{cite web |date=2007-01-22 |title=Comet C/2006 P1 (McNaught) - facts and figures |publisher=Perth Observatory in Australia |url=http://www.perthobservatory.wa.gov.au/information/comet_mcnaught_info.html |accessdate=2011-02-01}}</ref> As of a 2010 [[Epoch (astronomy)|Epoch]], Comet [[C/1980 E1]] has the largest eccentricity of any known hyperbolic comet with an eccentricity of 1.057,<ref name=C/1980E1-jpl>{{cite web
  |date=1986-12-02 last obs
  |title=JPL Small-Body Database Browser: C/1980 E1 (Bowell)
  |url=http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=1980E1
  |accessdate=2010-03-22}}</ref> and will leave the [[Solar System]] indefinitely.
 
[[Neptune]]'s largest moon [[Triton (moon)|Triton]] has an eccentricity of 1.6 × 10<sup>−5</sup>,<ref name=Triton>{{cite web
  |title=Neptunian Satellite Fact Sheet
|publisher=NASA
|author=David R. Williams
|date=22 January 2008
|url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/neptuniansatfact.html
|accessdate=2009-12-17 }}</ref> the smallest eccentricity of any known body in the Solar System; its orbit is as close to a perfect circle as can be currently measured.
 
==Mean eccentricity==
The mean eccentricity of an object is the average eccentricity as a result of [[Perturbation (astronomy)|perturbations]] over a given time period.  Neptune currently has an instant (current [[Epoch (astronomy)|Epoch]]) eccentricity of 0.0113,<ref name="nssdc-Neptune">{{cite web
  |title=Neptune Fact Sheet
  |date=2007-11-29
  |url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html
  |publisher=NASA
  |last=Williams |first=David R.
  |accessdate=2009-12-17}}</ref> but from 1800 A.D. to 2050 A.D. has a ''mean'' eccentricity of 0.00859.<ref name=ssd-mean>{{cite web
|title=Keplerian elements for 1800 A.D. to 2050 A.D.
|publisher=[http://ssd.jpl.nasa.gov/?planet_pos JPL Solar System Dynamics]
|url=http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt
|accessdate=2009-12-17}}</ref>
 
==Climatic effect==
Orbital mechanics require that the duration of the seasons be proportional to the area of the Earth's orbit swept between the [[solstices]] and [[equinoxes]], so when the orbital eccentricity is extreme, the seasons that occur on the far side of the orbit ([[aphelion]]) can be substantially longer in duration.  Today, northern hemisphere fall and winter occur at closest approach ([[perihelion]]), when the earth is moving at its maximum velocity -- while the opposite occurs in the southern hemisphere.  As a result, in the northern hemisphere, fall and winter are slightly shorter than spring and summer -- but in global terms this is balanced with them being longer below the equator.  In 2006, the northern hemisphere summer was 4.66 days longer than winter and spring was 2.9 days longer than fall.<ref>This information is concerning the summer of the year 2006 not the current year we are in now.</ref>{{Citation needed|date=November 2008}} [[Apsidal precession]] slowly changes the place in the Earth's orbit where the solstices and equinoxes occur (this is not the [[precession of the axis]]).  Over the next 10,000 years, northern hemisphere winters will become gradually longer and summers will become shorter. Any cooling effect in one hemisphere is balanced by warming in the other -- and any overall change will, however, be counteracted by the fact that the eccentricity of Earth's orbit will be almost halved{{Citation needed|date=October 2009}}, reducing the mean orbital radius and raising temperatures in both hemispheres closer to the mid-interglacial peak.
 
==See also==
*[[Eccentricity (mathematics)]]
*[[Eccentricity vector]]
*[[Equation of time]]
*[[Milankovitch cycles]]
*[[Orbit]]s
 
==References==
{{Reflist}}
Prussing, John E., and Bruce A. Conway. Orbital Mechanics. New York: Oxford University Press, 1993.
 
==External links==
* [http://scienceworld.wolfram.com/physics/Eccentricity.html World of Physics: Eccentricity]
* [http://www.ncdc.noaa.gov/paleo/forcing.html The NOAA page on Climate Forcing Data] includes (calculated) data from [ftp://ftp.ncdc.noaa.gov/pub/data/paleo/insolation/ Berger (1978), Berger and Loutre (1991)]. [http://www.imcce.fr/Equipes/ASD/insola/earth/earth.html Laskar et al. (2004)] on Earth orbital variations, Includes eccentricity over the last 50 million years and for the coming 20 million years.
* [http://astrobiology.ucla.edu/OTHER/SSO/ The orbital simulations by Varadi, Ghil and Runnegar (2003)] provides series for Earth orbital eccentricity and orbital inclination.
* [http://www.walter-fendt.de/ph14e/keplerlaw2.htm Kepler's Second law's simulation]
{{orbits}}
{{Use dmy dates|date=August 2011}}
 
[[Category:Orbits]]
 
[[ru:Кеплеровы элементы орбиты#Эксцентриситет]]

Revision as of 02:14, 24 August 2013

29 yr old Orthopaedic Surgeon Grippo from Saint-Paul, spends time with interests including model railways, top property developers in singapore developers in singapore and dolls. Finished a cruise ship experience that included passing by Runic Stones and Church.

An elliptic Kepler orbit with an eccentricity of 0.7 (red ellipse), a parabolic Kepler orbit (green) and a hyperbolic Kepler orbit with an eccentricity of 1.3 (blue outer line)

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptical orbit, 1 is a parabolic escape orbit, and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy.

Definition

In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape.

The eccentricity may take the following values:

The eccentricity is given by

where E is the total orbital energy, is the angular momentum, is the reduced mass. and the coefficient of the inverse-square law central force such as gravity or electrostatics in classical physics:

( is negative for an attractive force, positive for a repulsive one) (see also Kepler problem).

or in the case of a gravitational force:

where is the specific orbital energy (total energy divided by the reduced mass), the standard gravitational parameter based on the total mass, and the specific relative angular momentum (angular momentum divided by the reduced mass).

For values of e from 0 to 1 the orbit's shape is an increasingly elongated (or flatter) ellipse; for values of e from 1 to infinity the orbit is a hyperbola branch making a total turn of 2 arccsc e, decreasing from 180 to 0 degrees. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola.

Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1 (or in the parabolic case, remains 1).

For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable.

For elliptical orbits, a simple proof shows that arcsin() yields the projection angle of a perfect circle to an ellipse of eccentricity . For example, to view the eccentricity of the planet Mercury (=0.2056), one must simply calculate the inverse sine to find the projection angle of 11.86 degrees. Next, tilt any circular object (such as a coffee mug viewed from the top) by that angle and the apparent ellipse projected to your eye will be of that same eccentricity.

Etymology

From Medieval Latin eccentricus, derived from Greek ekkentros "out of the center", from ek-, ex- "out of" + kentron "center". Eccentric first appeared in English in 1551, with the definition "a circle in which the earth, sun. etc. deviates from its center." Five years later, in 1556, an adjective form of the word was added.

Calculation

The eccentricity of an orbit can be calculated from the orbital state vectors as the magnitude of the eccentricity vector:

where:

For elliptical orbits it can also be calculated from the periapsis and apoapsis since and , where is the semimajor axis.

where:

The eccentricity of an elliptical orbit can also be used to obtain the ratio of the periapsis to the apoapsis:

Examples

Gravity Simulator plot of the changing orbital eccentricity of Mercury, Venus, Earth, and Mars over the next 50,000 years. The 0 point on this plot is the year 2007.

The eccentricity of the Earth's orbit is currently about 0.0167; the Earth's orbit is nearly circular. Over hundreds of thousands of years, the eccentricity of the Earth's orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets (see graph).[1]

Mercury has the greatest orbital eccentricity of any planet in the Solar System (e=0.2056). Before 2006, Pluto was considered to be the planet with the most eccentric orbit (e=0.248). The Moon's value is 0.0549. For the values for all planets and other celestial bodies in one table, see List of gravitationally rounded objects of the Solar System.

Most of the Solar System's asteroids have orbital eccentricities between 0 and 0.35 with an average value of 0.17.[2] Their comparatively high eccentricities are probably due to the influence of Jupiter and to past collisions.

The eccentricity of comets is most often close to 1. Periodic comets have highly eccentric elliptical orbits with eccentricities just below 1; Halley's Comet's elliptical orbit, for example, has a value of 0.967. Non-periodic comets follow near-parabolic orbits and thus have eccentricities even closer to 1. Examples include Comet Hale–Bopp with a value of 0.995[3] and comet C/2006 P1 (McNaught) with a value of 1.000019.[4] As Hale–Bopp's value is less than 1, its orbit is elliptical and will in fact return.[3] Comet McNaught has a hyperbolic orbit while within the influence of the planets, but is still bound to the Sun with an orbital period of about 105 years.[5] As of a 2010 Epoch, Comet C/1980 E1 has the largest eccentricity of any known hyperbolic comet with an eccentricity of 1.057,[6] and will leave the Solar System indefinitely.

Neptune's largest moon Triton has an eccentricity of 1.6 × 10−5,[7] the smallest eccentricity of any known body in the Solar System; its orbit is as close to a perfect circle as can be currently measured.

Mean eccentricity

The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current Epoch) eccentricity of 0.0113,[8] but from 1800 A.D. to 2050 A.D. has a mean eccentricity of 0.00859.[9]

Climatic effect

Orbital mechanics require that the duration of the seasons be proportional to the area of the Earth's orbit swept between the solstices and equinoxes, so when the orbital eccentricity is extreme, the seasons that occur on the far side of the orbit (aphelion) can be substantially longer in duration. Today, northern hemisphere fall and winter occur at closest approach (perihelion), when the earth is moving at its maximum velocity -- while the opposite occurs in the southern hemisphere. As a result, in the northern hemisphere, fall and winter are slightly shorter than spring and summer -- but in global terms this is balanced with them being longer below the equator. In 2006, the northern hemisphere summer was 4.66 days longer than winter and spring was 2.9 days longer than fall.[10]Potter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park. Apsidal precession slowly changes the place in the Earth's orbit where the solstices and equinoxes occur (this is not the precession of the axis). Over the next 10,000 years, northern hemisphere winters will become gradually longer and summers will become shorter. Any cooling effect in one hemisphere is balanced by warming in the other -- and any overall change will, however, be counteracted by the fact that the eccentricity of Earth's orbit will be almost halvedPotter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park., reducing the mean orbital radius and raising temperatures in both hemispheres closer to the mid-interglacial peak.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro. Prussing, John E., and Bruce A. Conway. Orbital Mechanics. New York: Oxford University Press, 1993.

External links

The name of the writer is Garland. Playing croquet is something I will never give up. He presently life in Idaho and his mothers and fathers reside close by. Bookkeeping is what he does.

my web-site: extended auto warranty 30 year-old Entertainer or Range Artist Wesley from Drumheller, really loves vehicle, property developers properties for sale in singapore singapore and horse racing. Finds inspiration by traveling to Works of Antoni Gaudí.

ru:Кеплеровы элементы орбиты#Эксцентриситет

  1. Template:Cite web
  2. Asteroids
  3. 3.0 3.1 Template:Cite web
  4. Template:Cite web
  5. Template:Cite web
  6. Template:Cite web
  7. Template:Cite web
  8. Template:Cite web
  9. Template:Cite web
  10. This information is concerning the summer of the year 2006 not the current year we are in now.