Chandrasekhar number

From formulasearchengine
Jump to navigation Jump to search

Optimal matching is a sequence analysis method used in social science, to assess the dissimilarity of ordered arrays of tokens that usually represent a time-ordered sequence of socio-economic states two individuals have experienced. Once such distances have been calculated for a set of observations (e.g. individuals in a cohort) classical tools (such as cluster analysis) can be used. The method was tailored to social sciences[1] from a technique originally introduced to study molecular biology (protein or genetic) sequences (see sequence alignment). Optimal matching uses the Needleman-Wunsch algorithm.

Algorithm

Let S=(s1,s2,s3,sT) be a sequence of states si belonging to a finite set of possible states. Let us denote S the sequence space, i.e. the set of all possible sequences of states.

Optimal matching algorithms work by defining simple operator algebras that manipulate sequences, i.e. a set of operators ai:SS. In the most simple approach, a set composed of only three basic operations to transform sequences is used:

Imagine now that a cost c(ai)R0+ is associated to each operator. Given two sequences S1 and S2, the idea is to measure the cost of obtaining S2 from S1 using operators from the algebra. Let A=a1,a2,an be a sequence of operators such that the application of all the operators of this sequence A to the first sequence S1 gives the second sequence S2: S2=a1a2an(S1) where a1a2 denotes the compound operator. To this set we associate the cost c(A)=i=1nc(ai), that represents the total cost of the transformation. One should consider at this point that there might exist different such sequences A that transform S1 into S2; a reasonable choice is to select the cheapest of such sequences. We thus call distance
d(S1,S2)=minA{c(A)suchthatS2=A(S1)}
that is, the cost of the least expensive set of transformations that turn S1 into S2. Notice that d(S1,S2) is by definition nonnegative since it is the sum of positive costs, and trivially d(S1,S2)=0 if and only if S1=S2, that is there is no cost. The distance function is symmetric if insertion and deletion costs are equal c(aIns)=c(aDel); the term indel cost usually refers to the common cost of insertion and deletion.

Considering a set composed of only the three basic operations described above, this proximity measure satisfies the triangular inequality. Transitivity however, depends on the definition of the set of elementary operations.

Criticism

Although optimal matching techniques are widely used in sociology and demography, such techniques also have their flaws. As was pointed out by several authors (for example L. L. Wu[2]), the main problem in the application of optimal matching is to appropriately define the costs c(ai).

Optimal matching in causal modelling

Optimal matching is also a term used in statistical modelling of causal effects. In this context it refers to matching "cases" with "controls", and is completely separate from the sequence-analytic sense.

Software

  • TDA is a powerful program, offering access to some of the latest developments in transition data analysis.
  • STATA has implemented a package to run optimal matching analysis.
  • TraMineR is an open source R-package for analysing and visualizing states and events sequences, including optimal matching analysis.

References and notes

  1. A. Abbott and A. Tsay, (2000) Sequence Analysis and Optimal Matching Methods in Sociology: Review and Prospect Sociological Methods & Research], Vol. 29, 3-33. 21 year-old Glazier James Grippo from Edam, enjoys hang gliding, industrial property developers in singapore developers in singapore and camping. Finds the entire world an motivating place we have spent 4 months at Alejandro de Humboldt National Park.
  2. L. L. Wu. (2000) Some Comments on "Sequence Analysis and Optimal Matching Methods in Sociology: Review and Prospect" Sociological Methods & Research, 29 41-64. 21 year-old Glazier James Grippo from Edam, enjoys hang gliding, industrial property developers in singapore developers in singapore and camping. Finds the entire world an motivating place we have spent 4 months at Alejandro de Humboldt National Park.