Euler–Mascheroni constant

From formulasearchengine
Jump to navigation Jump to search

Template:Redirect

The area of the blue region converges to the Euler–Mascheroni constant.

The Euler–Mascheroni constant (also called Euler's constant) is a mathematical constant recurring in analysis and number theory, usually denoted by the lowercase Greek letter Template:Lang (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma ).

It is defined as the limiting difference between the harmonic series and the natural logarithm:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\lim _{{n\rightarrow \infty }}\left(\sum _{{k=1}}^{n}{\frac {1}{k}}-\ln(n)\right)=\int _{1}^{\infty }\left({1 \over \lfloor x\rfloor }-{1 \over x}\right)\,dx.

Here, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \lfloor x\rfloor represents the floor function.

The numerical value of the Euler–Mascheroni constant, to 50 decimal places, is

Template:Gaps.[1]
Template:Irrational numbers
Binary Template:Gaps
Decimal Template:Gaps
Hexadecimal Template:Gaps
Continued fraction Template:Nowrap[2]
(This continued fraction is not known to be finite or periodic.
Shown in linear notation)

History

The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43). Euler used the notations C and O for the constant. In 1790, Italian mathematician Lorenzo Mascheroni used the notations A and a for the constant. The notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time perhaps because of the constant's connection to the gamma function.[3] For example, the German mathematician Carl Anton Bretschneider used the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma in 1835[4] and Augustus De Morgan used it in a textbook published in parts from 1836 to 1842.[5]

Appearances

The Euler–Mascheroni constant appears, among other places, in the following ('*' means that this entry contains an explicit equation):

Properties

The number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma has not been proved algebraic or transcendental. In fact, it is not even known whether Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma is irrational. Continued fraction analysis reveals that if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma is rational, its denominator must be greater than 10242080.[7] The ubiquity of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma revealed by the large number of equations below makes the irrationality of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma a major open question in mathematics. Also see Sondow (2003a).

Relation to gamma function

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma is related to the digamma function Ψ, and hence the derivative of the gamma function Γ, when both functions are evaluated at 1. Thus:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \ -\gamma =\Gamma '(1)=\Psi (1).

This is equal to the limits:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): -\gamma =\lim _{{z\to 0}}\left\{\Gamma (z)-{\frac 1{z}}\right\}=\lim _{{z\to 0}}\left\{\Psi (z)+{\frac 1{z}}\right\}.

Further limit results are (Krämer, 2005):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \lim _{{z\to 0}}{\frac 1{z}}\left\{{\frac 1{\Gamma (1+z)}}-{\frac 1{\Gamma (1-z)}}\right\}=2\gamma
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \lim _{{z\to 0}}{\frac 1{z}}\left\{{\frac 1{\Psi (1-z)}}-{\frac 1{\Psi (1+z)}}\right\}={\frac {\pi ^{2}}{3\gamma ^{2}}}.

A limit related to the beta function (expressed in terms of gamma functions) is

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\lim _{{n\to \infty }}\left\{{\frac {\Gamma ({\frac {1}{n}})\Gamma (n+1)\,n^{{1+1/n}}}{\Gamma (2+n+{\frac {1}{n}})}}-{\frac {n^{2}}{n+1}}\right\}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\lim \limits _{{m\to \infty }}\sum _{{k=1}}^{m}{m \choose k}{\frac {(-1)^{k}}{k}}\ln(\Gamma (k+1)).

Relation to the zeta function

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\begin{aligned}\gamma &=\sum _{{m=2}}^{{\infty }}(-1)^{m}{\frac {\zeta (m)}{m}}\\&=\ln \left({\frac {4}{\pi }}\right)+\sum _{{m=2}}^{{\infty }}(-1)^{m}{\frac {\zeta (m)}{2^{{m-1}}m}}.\end{aligned}}

Other series related to the zeta function include:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\begin{aligned}\gamma &={\frac {3}{2}}-\ln 2-\sum _{{m=2}}^{\infty }(-1)^{m}\,{\frac {m-1}{m}}[\zeta (m)-1]\\&=\lim _{{n\to \infty }}\left[{\frac {2\,n-1}{2\,n}}-\ln \,n+\sum _{{k=2}}^{n}\left({\frac {1}{k}}-{\frac {\zeta (1-k)}{n^{k}}}\right)\right]\\&=\lim _{{n\to \infty }}\left[{\frac {2^{n}}{e^{{2^{n}}}}}\sum _{{m=0}}^{\infty }{\frac {2^{{m\,n}}}{(m+1)!}}\sum _{{t=0}}^{m}{\frac {1}{t+1}}-n\,\ln 2+O\left({\frac {1}{2^{n}\,e^{{2^{n}}}}}\right)\right].\end{aligned}}

The error term in the last equation is a rapidly decreasing function of n. As a result, the formula is well-suited for efficient computation of the constant to high precision.

Other interesting limits equaling the Euler–Mascheroni constant are the antisymmetric limit (Sondow, 1998)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\lim _{{s\to 1^{+}}}\sum _{{n=1}}^{\infty }\left({\frac {1}{n^{s}}}-{\frac {1}{s^{n}}}\right)=\lim _{{s\to 1}}\left(\zeta (s)-{\frac {1}{s-1}}\right)=\lim _{{s\to 0}}{\frac {\zeta (1+s)+\zeta (1-s)}{2}}

and de la Vallée-Poussin's formula

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\begin{aligned}\gamma =\lim _{{n\to \infty }}{\frac {1}{n}}\,\sum _{{k=1}}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right).\end{aligned}}

Closely related to this is the rational zeta series expression. By peeling off the first few terms of the series above, one obtains an estimate for the classical series limit:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\sum _{{k=1}}^{n}{\frac {1}{k}}-\ln n-\sum _{{m=2}}^{\infty }{\frac {\zeta (m,n+1)}{m}}

where ζ(s,k) is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, Hn. Expanding some of the terms in the Hurwitz zeta function gives:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): H_{n}=\ln n+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-\varepsilon , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): 0<\varepsilon <{\frac {1}{252n^{6}}}.

Integrals

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma equals the value of a number of definite integrals:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\begin{aligned}\gamma &=-\int _{0}^{\infty }{e^{{-x}}\ln x}\,dx=-4\int _{0}^{\infty }{e^{{-x^{2}}}x\ln x}\,dx\\&=-\int _{0}^{1}\ln \ln \left({\frac {1}{x}}\right)dx\\&=\int _{0}^{\infty }\left({\frac 1{e^{x}-1}}-{\frac 1{xe^{x}}}\right)dx=\int _{0}^{1}\left({\frac 1{\ln x}}+{\frac 1{1-x}}\right)dx\\&=\int _{0}^{\infty }\left({\frac 1{1+x^{k}}}-e^{{-x}}\right){\frac {dx}{x}},\quad k>0\\&=\int _{0}^{1}H_{{x}}dx\end{aligned}}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): H_{{x}} is the fractional Harmonic number.

Definite integrals in which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma appears include:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \int _{0}^{\infty }{e^{{-x^{2}}}\ln x}\,dx=-{\tfrac 14}(\gamma +2\ln 2){\sqrt {\pi }}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \int _{0}^{\infty }{e^{{-x}}\ln ^{2}x}\,dx=\gamma ^{2}+{\frac {\pi ^{2}}{6}}.

One can express Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma using a special case of Hadjicostas's formula as a double integral (Sondow 2003a, 2005) with equivalent series:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\int _{{0}}^{{1}}\int _{{0}}^{{1}}{\frac {x-1}{(1-x\,y)\ln(x\,y)}}\,dx\,dy=\sum _{{n=1}}^{\infty }\left({\frac {1}{n}}-\ln {\frac {n+1}{n}}\right).

An interesting comparison by J. Sondow (2005) is the double integral and alternating series

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \ln \left({\frac {4}{\pi }}\right)=\int _{{0}}^{{1}}\int _{{0}}^{{1}}{\frac {x-1}{(1+x\,y)\ln(x\,y)}}\,dx\,dy=\sum _{{n=1}}^{\infty }(-1)^{{n-1}}\left({\frac {1}{n}}-\ln {\frac {n+1}{n}}\right).

It shows that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \ln \left({\frac {4}{\pi }}\right) may be thought of as an "alternating Euler constant".

The two constants are also related by the pair of series (see Sondow 2005 #2)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \sum _{{n=1}}^{\infty }{\frac {N_{1}(n)+N_{0}(n)}{2n(2n+1)}}=\gamma
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \sum _{{n=1}}^{\infty }{\frac {N_{1}(n)-N_{0}(n)}{2n(2n+1)}}=\ln \left({\frac {4}{\pi }}\right)

where N1(n) and N0(n) are the number of 1's and 0's, respectively, in the base 2 expansion of n.

We have also Catalan's 1875 integral (see Sondow and Zudilin)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\int _{0}^{1}{\frac {1}{1+x}}\sum _{{n=1}}^{\infty }x^{{2^{n}-1}}\,dx.

Series expansions

Euler showed that the following infinite series approaches Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\sum _{{k=1}}^{\infty }\left[{\frac {1}{k}}-\ln \left(1+{\frac {1}{k}}\right)\right].

The series for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma is equivalent to series Nielsen found in 1897:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =1-\sum _{{k=2}}^{{\infty }}(-1)^{k}{\frac {\lfloor \log _{2}k\rfloor }{k+1}}.

In 1910, Vacca found the closely related series:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\gamma =\sum _{{k=2}}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k}}={\frac 12}-{\frac 13}+2\left({\frac 14}-{\frac 15}+{\frac 16}-{\frac 17}\right)+3\left({\frac 18}-{\frac 19}+{\frac 1{10}}-{\frac 1{11}}+\dots -{\frac 1{15}}\right)+\dots }

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \log _{2} is the logarithm of base 2 and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \lfloor \,\rfloor is the floor function.

In 1926 he found a second series:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\gamma +\zeta (2)=\sum _{{k=2}}^{\infty }\left({\frac 1{\lfloor {\sqrt {k}}\rfloor ^{2}}}-{\frac 1{k}}\right)=\sum _{{k=2}}^{{\infty }}{\frac {k-\lfloor {\sqrt {k}}\rfloor ^{2}}{k\lfloor {\sqrt {k}}\rfloor ^{2}}}={\frac 12}+{\frac 23}+{\frac 1{2^{2}}}\sum _{{k=1}}^{{2\times 2}}{\frac k{k+2^{2}}}+{\frac 1{3^{2}}}\sum _{{k=1}}^{{3\times 2}}{\frac k{k+3^{2}}}+\dots }.

From the Malmsten-Kummer-expansion for the logarithm of the gamma function we get:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\ln \pi -4\ln \Gamma ({\tfrac 34})+{\frac 4{\pi }}\sum _{{k=1}}^{{\infty }}(-1)^{{k+1}}{\frac {\ln(2k+1)}{2k+1}}.

Series of prime numbers:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\begin{aligned}\gamma =\lim _{{n\to \infty }}\left(\ln n-\sum _{{p\leq n}}{\frac {\ln p}{p-1}}\right)\end{aligned}}. [8]

Series relating to square roots:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = \lim_{n \rightarrow \infty}\left [ \sum_{k=1}^n \frac{1}{k} - \ln \sqrt { \sum_{k=1}^n k } \right ] - \ln \sqrt 2} [9]

Asymptotic expansions

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma equals the following asymptotic formulas (where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): H_n is the nth harmonic number.)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma \sim H_{n}-\ln \left(n\right)-{\frac {1}{{2n}}}+{\frac {1}{{12n^{2}}}}-{\frac {1}{{120n^{4}}}}+...
(Euler)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma \sim H_{n}-\ln \left({n+{\frac {1}{2}}+{\frac {1}{{24n}}}-{\frac {1}{{48n^{3}}}}+...}\right)
(Negoi)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma \sim H_{n}-{\frac {{\ln \left(n\right)+\ln \left({n+1}\right)}}{2}}-{\frac {1}{{6n\left({n+1}\right)}}}+{\frac {1}{{30n^{2}\left({n+1}\right)^{2}}}}-...
(Cesaro)

The third formula is also called the Ramanujan expansion.

Relations with the reciprocal logarithm

The reciprocal logarithm function (Krämer, 2005)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\frac {z}{\ln(1-z)}}=\sum _{{n=0}}^{{\infty }}C_{n}z^{n},\quad |z|<1,

has a deep connection with Euler's constant and was studied by James Gregory in connection with numerical integration. The coefficients Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): C_{n} are called Gregory coefficients; the first six were given in a letter to John Collins in 1670. From the equations

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): C_{0}=-1\;,\quad \sum _{{k=0}}^{n}{\frac {C_{k}}{n+1-k}}=0,\quad n=1,2,3,\dots

, which can be used recursively to get these coefficients for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): n\geq 1 , we get the table

n 1 2 3 4 5 6 7 8 9 10 OEIS sequences
Cn Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac 12} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac 1{12}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac 1{24}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac {19}{720}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac 3{160}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac {863}{60480}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac {275}{24192}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac {33953}{3628800}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac {8183}{1036800}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\tfrac {3250433}{479001600}} Template:OEIS2C (numerators),

Template:OEIS2C(denominators)

Gregory coefficients are similar to Bernoulli numbers and satisfy the asymptotic relation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): C_{n}={\frac 1{n\ln ^{2}n}}-{\mathcal {O}}\left({\frac 1{n\ln ^{3}n}}\right),\quad n\to \infty ,

and the integral representation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): C_{n}=\int _{0}^{{\infty }}{\frac {dx}{(1+x)^{n}\left(\ln ^{2}x+\pi ^{2}\right)}},\quad n=1,2,\dots .

Euler's constant has the integral representations

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\int _{0}^{{\infty }}{\frac {\ln(1+x)}{\ln ^{2}x+\pi ^{2}}}\cdot {\frac {dx}{x^{2}}}=\int _{{-\infty }}^{{\infty }}{\frac {\ln(1+e^{{-x}})}{x^{2}+\pi ^{2}}}\,e^{x}\,dx.

A very important expansion of Gregorio Fontana (1780) is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\begin{aligned}H_{n}&=\gamma +\log n+{\frac 1{2n}}-\sum _{{k=2}}^{{\infty }}{\frac {(k-1)!C_{k}}{n(n+1)\dots (n+k-1)}},\quad n=1,2,\dots ,\\&=\gamma +\log n+{\frac 1{2n}}-{\frac 1{12n(n+1)}}-{\frac 1{12n(n+1)(n+2)}}-{\frac {19}{120n(n+1)(n+2)(n+3)}}-\dots \end{aligned}}

which is convergent for all n.

Weighted sums of the Gregory coefficients give different constants:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\begin{aligned}1&=\sum _{{n=1}}^{{\infty }}C_{n}={\tfrac 12}+{\tfrac 1{12}}+{\tfrac 1{24}}+{\tfrac {19}{720}}+{\tfrac 3{160}}+\dots ,\\{\frac 1{\log 2}}-1&=\sum _{{n=1}}^{{\infty }}(-1)^{{n+1}}C_{n}={\tfrac 12}-{\tfrac 1{12}}+{\tfrac 1{24}}-{\tfrac {19}{720}}+{\tfrac 3{160}}-\dots ,\\\gamma &=\sum _{{n=1}}^{{\infty }}{\frac {C_{n}}{n}}={\tfrac 12}+{\tfrac 1{24}}+{\tfrac 1{72}}+{\tfrac {19}{2880}}+{\tfrac 3{800}}+\dots .\end{aligned}}

eγ

The constant eγ is important in number theory. Some authors denote this quantity simply as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma ^{\prime } . eγ equals the following limit, where pn is the nth prime number:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): e^{\gamma }=\lim _{{n\to \infty }}{\frac {1}{\ln p_{n}}}\prod _{{i=1}}^{n}{\frac {p_{i}}{p_{i}-1}}.

This restates the third of Mertens' theorems. The numerical value of eγ is:

1.78107241799019798523650410310717954916964521430343 … Template:OEIS2C.

Other infinite products relating to eγ include:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\frac {e^{{1+\gamma /2}}}{{\sqrt {2\,\pi }}}}=\prod _{{n=1}}^{\infty }e^{{-1+1/(2\,n)}}\,\left(1+{\frac {1}{n}}\right)^{n}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\frac {e^{{3+2\gamma }}}{2\,\pi }}=\prod _{{n=1}}^{\infty }e^{{-2+2/n}}\,\left(1+{\frac {2}{n}}\right)^{n}.

These products result from the Barnes G-function.

We also have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): e^{{\gamma }}=\left({\frac {2}{1}}\right)^{{1/2}}\left({\frac {2^{2}}{1\cdot 3}}\right)^{{1/3}}\left({\frac {2^{3}\cdot 4}{1\cdot 3^{3}}}\right)^{{1/4}}\left({\frac {2^{4}\cdot 4^{4}}{1\cdot 3^{6}\cdot 5}}\right)^{{1/5}}\cdots

where the nth factor is the (n+1)st root of

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \prod _{{k=0}}^{n}(k+1)^{{(-1)^{{k+1}}{n \choose k}}}.

This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow (2003) using hypergeometric functions.

Continued fraction

The continued fraction expansion of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma is of the form [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] Template:OEIS2C, of which there is no apparent pattern. The continued fraction has at least 470,000 terms,[7] and it has infinitely many terms if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma is irrational.

Generalizations

Euler's generalized constants are given by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma _{\alpha }=\lim _{{n\to \infty }}\left[\sum _{{k=1}}^{n}{\frac {1}{k^{\alpha }}}-\int _{1}^{n}{\frac {1}{x^{\alpha }}}\,dx\right],

for 0 < α < 1, with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma as the special case α = 1.[10] This can be further generalized to

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): c_{f}=\lim _{{n\to \infty }}\left[\sum _{{k=1}}^{n}f(k)-\int _{1}^{n}f(x)\,dx\right]

for some arbitrary decreasing function f. For example,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): f_{n}(x)={\frac {\ln ^{n}x}{x}}

gives rise to the Stieltjes constants, and

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): f_{a}(x)=x^{{-a}}

gives

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma _{{f_{a}}}={\frac {(a-1)\zeta (a)-1}{a-1}}

where again the limit

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma =\lim _{{a\to 1}}\left[\zeta (a)-{\frac {1}{a-1}}\right]

appears.

A two-dimensional limit generalization is the Masser–Gramain constant.

Euler-Lehmer constants are given by summation of inverses of numbers in a common modulo class[11] ,[12]

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma (a,q)=\lim _{{x\to \infty }}\left(\sum _{{0<n\leq x \atop n\equiv a{\pmod q}}}{\frac {1}{n}}-{\frac {\log x}{q}}\right).

The basic properties are

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma (0,q)={\frac {\gamma -\log q}{q}},
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \sum _{{a=0}}^{{q-1}}\gamma (a,q)=\gamma ,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): q\gamma (a,q)=\gamma -\sum _{{j=1}}^{{q-1}}e^{{-2\pi aij/q}}\log(1-e^{{2\pi ij/q}}),

and if Template:Math then

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): q\gamma (a,q)={\frac {q}{d}}\gamma (a/d,q/d)-\log d.

Published digits

Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th–22nd decimal places; starting from the 20th digit, he calculated ...1811209008239 when the correct value is ...0651209008240.

Published Decimal Expansions of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): \gamma
Date Decimal digits Author
1734 5 Leonhard Euler
1735 15 Leonhard Euler
1790 19 Lorenzo Mascheroni
1809 22 Johann G. von Soldner
1811 22 Carl Friedrich Gauss
1812 40 Friedrich Bernhard Gottfried Nicolai
1857 34 Christian Fredrik Lindman
1861 41 Ludwig Oettinger
1867 49 William Shanks
1871 99 James W.L. Glaisher
1871 101 William Shanks
1877 262 J. C. Adams
1952 328 John William Wrench, Jr.
1961 1050 Helmut Fischer and Karl Zeller
1962 1,271 Donald Knuth
1962 3,566 Dura W. Sweeney
1973 4,879 William A. Beyer and Michael S. Waterman
1977 20,700 Richard P. Brent
1980 30,100 Richard P. Brent & Edwin M. McMillan
1993 172,000 Jonathan Borwein
2009 29,844,489,545 Alexander J. Yee & Raymond Chan[13]
2013 119,377,958,182 Alexander J. Yee[13]

See also

Template:Portal Template:Quote box Template:-

Notes

Footnotes

Template:Reflist

References

External links

Template:Irrational number

  1. Template:OEIS2C
  2. Template:OEIS2C
  3. Template:Cite journal
  4. Carl Anton Bretschneider: Theoriae logarithmi integralis lineamenta nova (13 October 1835), Journal für die reine und angewandte Mathematik 17, 1837, pp. 257–285 (in Latin; "γ = c = 0,577215 664901 532860 618112 090082 3.." on p. 260)
  5. Augustus De Morgan: The differential and integral calculus, Baldwin and Craddock, London 1836–1842 ("γ" on p. 578)
  6. Template:Cite journal
  7. 7.0 7.1 Havil 2003 p 97.
  8. http://mathworld.wolfram.com/MertensConstant.html (15)
  9. http://mathworld.wolfram.com/Euler-MascheroniConstant.html
  10. Havil, 117-118
  11. Template:Cite journal
  12. Template:Cite journal
  13. 13.0 13.1 Nagisa – Large Computations