Extended theories of gravity

From formulasearchengine
Jump to navigation Jump to search
Distribution of astronomical systems in the phase space diagram or gravity, plotted by X. Hernández

Extended theories of gravity are alternative theories of gravity developed from the exact starting points investigated first by Einstein and Hilbert. These are theories describing gravity, which are metric theory, "a linear connection" or related affine theories, or metric-affine gravitation theory. Rather than trying to discover correct calculations for the matter side of the Einstein field equations; which include inflation, dark energy, dark matter, large-scale structure, and possibly quantum gravity; it is proposed, instead, to change the gravitational side of the equation.[1][2]

Proposed theories

Template:Expand section

Hernández et al.

Template:Undue One such theory is also an extension to general relativity and Newton's Universal gravity law (), first proposed in 2010 by the Mexican astronomers Xavier Hernández Doring, Sergio Mendoza Ramos et al., researchers at the Astronomy Institute, at the National Autonomous University of Mexico.[3][4] This theory is in accordance with observations of kinematics of the solar system, extended binary stars,[5] and all types of galaxies and galactic groups and clouds.[6] It also reproduces the gravitational lensing effect with out the need of postulating dark matter.[7]

There is some evidence that it could also explain the dark energy phenomena[8][9] and give a nice solution to the initial conditions problem.[10]

These results can be classified as a metric f(R) gravity theory, more properly an f(R,T) theory, derived from an action principle. This approach to solve the dark matter problem takes into account the Tully–Fisher relation as an empirical law that applies always at scales larger than the Milgrom radius.[11]

See also


  1. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  2. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  3. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  4. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  5. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  6. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  7. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  8. {{#invoke:citation/CS1|citation |CitationClass=book }}
  9. {{#invoke:Citation/CS1|citation |CitationClass=journal }}
  10. Template:Cite arXiv
  11. {{#invoke:citation/CS1|citation |CitationClass=conference }}

Further reading

  • {{#invoke:Citation/CS1|citation

|CitationClass=journal }}

  • {{#invoke:Citation/CS1|citation

|CitationClass=journal }}

External links


  1. REDIRECT Template:Link language.
  1. REDIRECT Template:Link language.
  1. REDIRECT Template:Link language.