List of equations in fluid mechanics
Jump to navigation
Jump to search
Template:Continuum mechanics This article summarizes equations in the theory of fluid mechanics.
Definitions

Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to normal n). F•dS is the component of flux passing though the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area.
Here is a unit vector in the direction of the flow/current/flux.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Flow velocity vector field u m s−1 [L][T]−1 Vorticity pseudovector field ω s−1 [T]−1 Volume velocity, volume flux φV (no standard symbol) m3 s−1 [L]3 [T]−1 Mass current per unit volume s (no standard symbol) kg m−3 s−1 [M] [L]−3 [T]−1 Mass current, mass flow rate Im kg s−1 [M][T]−1 Mass current density jm kg m−2 s−1 [M][L]−2[T]−1 Momentum current Ip kg m s−2 [M][L][T]−2 Momentum current density jp kg m s−2 [M][L][T]−2
Equations
Physical situation Nomenclature Equations Fluid statics,
pressure gradient- r = Position
- ρ = ρ(r) = Fluid density at gravitational equipotential containing r
- g = g(r) = Gravitational field strength at point r
- ∇P = Pressure gradient
Buoyancy equations - ρf = Mass density of the fluid
- Vimm = Immersed volume of body in fluid
- Fb = Buoyant force
- Fg = Gravitational force
- Wapp = Apparent weight of immersed body
- W = Actual weight of immersed body
Buoyant force
Bernoulli's equation pconstant is the total pressure at a point on a streamline Euler equations - ρ = fluid mass density
- u is the fluid velocity vector
- E = total volume energy density
- U = internal energy per unit mass of fluid
- p = pressure
- denotes the tensor product
Convective acceleration Navier-stokes equations - TD = Deviatoric stress tensor
- = volume density of the body forces acting on the fluid
- here is the del operator.
See also
- Defining equation (physical chemistry)
- List of equations in classical mechanics
- Table of thermodynamic equations
- List of relativistic equations
- List of equations in gravitation
- List of electromagnetism equations
- List of photonics equations
- List of equations in quantum mechanics
- List of equations in nuclear and particle physics
Footnotes
Sources
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
Further reading
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- {{#invoke:citation/CS1|citation
|CitationClass=book }}
- REDIRECT Template:SI units