# Malnormal subgroup

• An intersection of malnormal subgroups is malnormal.[2]
• Malnormality is transitive, that is, a malnormal subgroup of a malnormal subgroup is malnormal.[3]
• The trivial subgroup and the whole group are malnormal subgroups. A normal subgroup that is also malnormal must be one of these.[4]
• Every malnormal subgroup is a special type of C-group called a trivial intersection subgroup or TI subgroup.

When G is finite, a malnormal subgroup H distinct from 1 and G is called a "Frobenius complement".[4] The set N of elements of G which are, either equal to 1, or non-conjugate to any element of G, is a normal subgroup of G, called the "Frobenius kernel", and G is the semi-direct product of H and N (Frobenius' theorem).[5]

## References

1. {{#invoke:citation/CS1|citation |CitationClass=citation }}.
2. {{#invoke:citation/CS1|citation |CitationClass=citation }}.
3. {{#invoke:citation/CS1|citation |CitationClass=citation }}.
4. {{#invoke:citation/CS1|citation |CitationClass=citation }}.
5. {{#invoke:citation/CS1|citation |CitationClass=citation }}.