# Maxwell stress tensor

{{#invoke: Sidebar | collapsible }}

The **Maxwell stress tensor** (named after James Clerk Maxwell) is a **second rank tensor** used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impossibly difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

## Motivation

As outlined below, the electromagnetic force is written in terms of **E** and **B**, using vector calculus and Maxwell's equations symmetry in the terms containing **E** and **B** are sought for, and introducing the Maxwell stress-tensor simplifies the result.

in the above relation for conservation of momentum, is the **momentum flux density** and plays a role similar to in Poynting's theorem.

## Equation

In physics, the **Maxwell stress tensor** is the stress tensor of an electromagnetic field. As derived above in SI units, it is given by:

where ε_{0} is the electric constant and μ_{0} is the magnetic constant, **E** is the electric field, **B** is the magnetic field and δ_{ij} is Kronecker's delta. In Gaussian cgs unit, it is given by:

where **H** is the magnetizing field.

An alternative way of expressing this tensor is:

where ⊗ is the dyadic product.

The element *ij* of the Maxwell stress tensor has units of momentum per unit of area times time and gives the flux of momentum parallel to the *i*th axis crossing a surface normal to the *j*th axis (in the negative direction) per unit of time.

These units can also be seen as units of force per unit of area (negative pressure), and the *ij* element of the tensor can also be interpreted as the force parallel to the *i*th axis suffered by a surface normal to the jth axis per unit of area. Indeed the diagonal elements give the tension (pulling) acting on a differential area element normal to the corresponding axis. Unlike forces due to the pressure of an ideal gas, an area element in the electromagnetic field also feels a force in a direction that is not normal to the element. This shear is given by the off-diagonal elements of the stress tensor.

## Magnetism only

If the field is only magnetic (which is largely true in motors, for instance), some of the terms drop out, and the equation in SI units becomes:

For cylindrical objects, such as the rotor of a motor, this is further simplified to:

where *r* is the shear in the radial (outward from the cylinder) direction, and *t* is the shear in the tangential (around the cylinder) direction. It is the tangential force which spins the motor. *B*_{r} is the flux density in the radial direction, and *B*_{t} is the flux density in the tangential direction.

## See also

- Ricci calculus
- Energy density of electric and magnetic fields
- Poynting vector
- Electromagnetic stress-energy tensor
- Magnetic pressure
- Magnetic tension force

## References

- David J. Griffiths,"Introduction to Electrodynamics" pp. 351–352, Benjamin Cummings Inc., 2008
- John David Jackson,"Classical Electrodynamics, 3rd Ed.", John Wiley & Sons, Inc., 1999.
- Richard Becker,"Electromagnetic Fields and Interactions",Dover Publications Inc., 1964.