# Stieltjes moment problem

In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions for a sequence { mn, : n = 0, 1, 2, ... } to be of the form

${\displaystyle m_{n}=\int _{0}^{\infty }x^{n}\,d\mu (x)\,}$

for some measure μ. If such a function μ exists, one asks whether it is unique.

The essential difference between this and other well-known moment problems is that this is on a half-line [0, ∞), whereas in the Hausdorff moment problem one considers a bounded interval [0, 1], and in the Hamburger moment problem one considers the whole line (−∞, ∞).

## Existence

Let

${\displaystyle \Delta _{n}=\left[{\begin{matrix}m_{0}&m_{1}&m_{2}&\cdots &m_{n}\\m_{1}&m_{2}&m_{3}&\cdots &m_{n+1}\\m_{2}&m_{3}&m_{4}&\cdots &m_{n+2}\\\vdots &\vdots &\vdots &\ddots &\vdots \\m_{n}&m_{n+1}&m_{n+2}&\cdots &m_{2n}\end{matrix}}\right]}$

and

${\displaystyle \Delta _{n}^{(1)}=\left[{\begin{matrix}m_{1}&m_{2}&m_{3}&\cdots &m_{n+1}\\m_{2}&m_{3}&m_{4}&\cdots &m_{n+2}\\m_{3}&m_{4}&m_{5}&\cdots &m_{n+3}\\\vdots &\vdots &\vdots &\ddots &\vdots \\m_{n+1}&m_{n+2}&m_{n+3}&\cdots &m_{2n+1}\end{matrix}}\right].}$

Then { mn : n = 1, 2, 3, ... } is a moment sequence of some measure on ${\displaystyle [0,\infty )}$ with infinite support if and only if for all n, both

${\displaystyle \det(\Delta _{n})>0\ \mathrm {and} \ \det \left(\Delta _{n}^{(1)}\right)>0.}$

mn : n = 1, 2, 3, ... } is a moment sequence of some measure on ${\displaystyle [0,\infty )}$ with finite support of size m if and only if for all ${\displaystyle n\leq m}$, both

${\displaystyle \det(\Delta _{n})>0\ \mathrm {and} \ \det \left(\Delta _{n}^{(1)}\right)>0}$

and for all larger ${\displaystyle n}$

${\displaystyle \det(\Delta _{n})=0\ \mathrm {and} \ \det \left(\Delta _{n}^{(1)}\right)=0.}$

## Uniqueness

There are several sufficient conditions for uniqueness, for example, Carleman's condition, which states that the solution is unique if

${\displaystyle \sum _{n\geq 1}m_{n}^{-1/(2n)}=\infty ~.}$

## References

• {{#invoke:citation/CS1|citation

|CitationClass=citation }}