The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.[1]
The directional derivative provides a systematic way of finding these derivatives.[2]
Derivatives with respect to vectors and second-order tensors
The definitions of directional derivatives for various situations are given below. It is assumed that the functions are sufficiently smooth that derivatives can be taken.
Derivatives of scalar valued functions of vectors
Let f(v) be a real valued function of the vector v. Then the derivative of f(v) with respect to v (or at v) in the direction u is the vector defined as
![{\displaystyle {\frac {\partial f}{\partial \mathbf {v} }}\cdot \mathbf {u} =Df(\mathbf {v} )[\mathbf {u} ]=\left[{\frac {d}{d\alpha }}~f(\mathbf {v} +\alpha ~\mathbf {u} )\right]_{\alpha =0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/308eadd1b18b96a60ef33e8df365bccc97f0faea)
for all vectors u.
Properties:
1) If
then
2) If
then
3) If
then
Derivatives of vector valued functions of vectors
Let f(v) be a vector valued function of the vector v. Then the derivative of f(v) with respect to v (or at v) in the direction u is the second order tensor defined as
![{\displaystyle {\frac {\partial \mathbf {f} }{\partial \mathbf {v} }}\cdot \mathbf {u} =D\mathbf {f} (\mathbf {v} )[\mathbf {u} ]=\left[{\frac {d}{d\alpha }}~\mathbf {f} (\mathbf {v} +\alpha ~\mathbf {u} )\right]_{\alpha =0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8835d592f0ae810b9b57fa81f345a4850f1f1ce)
for all vectors u.
- Properties:
- 1) If
then 
- 2) If
then 
- 3) If
then 
Derivatives of scalar valued functions of second-order tensors
Let
be a real valued function of the second order tensor
. Then the derivative of
with respect to
(or at
) in the direction
is the second order tensor defined as
![{\displaystyle {\frac {\partial f}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=Df({\boldsymbol {S}})[{\boldsymbol {T}}]=\left[{\frac {d}{d\alpha }}~f({\boldsymbol {S}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3916392ebeebca9ebddb31e76edb1c9f8c08b586)
for all second order tensors
.
- Properties:
- 1) If
then 
- 2) If
then 
- 3) If
then 
Derivatives of tensor valued functions of second-order tensors
Let
be a second order tensor valued function of the second order tensor
. Then the derivative of
with respect to
(or at
) in the direction
is the fourth order tensor defined as
![{\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {S}}}}:{\boldsymbol {T}}=D{\boldsymbol {F}}({\boldsymbol {S}})[{\boldsymbol {T}}]=\left[{\frac {d}{d\alpha }}~{\boldsymbol {F}}({\boldsymbol {S}}+\alpha ~{\boldsymbol {T}})\right]_{{\alpha =0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2072ee23ca460f6f32851f397b5879a47033c3b)
for all second order tensors
.
- Properties:
- 1) If
then 
- 2) If
then 
- 3) If
then 
- 4) If
then 
Gradient of a tensor field
The gradient,
, of a tensor field
in the direction of an arbitrary constant vector c is defined as:

The gradient of a tensor field of order n is a tensor field of order n+1.
Cartesian coordinates
Template:Einstein summation convention
If
are the basis vectors in a Cartesian coordinate system, with coordinates of points denoted by (
), then the gradient of the tensor field
is given by

Since the basis vectors do not vary in a Cartesian coordinate system we have the following relations for the gradients of a scalar field
, a vector field v, and a second-order tensor field
.

Curvilinear coordinates
{{#invoke:main|main}}
Template:Einstein summation convention
If
are the contravariant basis vectors in a curvilinear coordinate system, with coordinates of points denoted by (
), then the gradient of the tensor field
is given by (see [3] for a proof.)

From this definition we have the following relations for the gradients of a scalar field
, a vector field v, and a second-order tensor field
.

where the Christoffel symbol
is defined using

Cylindrical polar coordinates
In cylindrical coordinates, the gradient is given by
![{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\phi &={\cfrac {\partial \phi }{\partial r}}~\mathbf {e} _{r}+{\cfrac {1}{r}}~{\cfrac {\partial \phi }{\partial \theta }}~\mathbf {e} _{\theta }+{\cfrac {\partial \phi }{\partial z}}~\mathbf {e} _{z}\\{\boldsymbol {\nabla }}\mathbf {v} &={\cfrac {\partial v_{r}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{r}}{\partial \theta }}-v_{\theta }\right)~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\cfrac {\partial v_{r}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\cfrac {\partial v_{\theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\\&\quad +{\cfrac {\partial v_{\theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\cfrac {\partial v_{z}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}{\cfrac {\partial v_{z}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\cfrac {\partial v_{z}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\\{\boldsymbol {\nabla }}{\boldsymbol {S}}&={\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{rr}}{\partial \theta }}-(S_{\theta r}+S_{r\theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{rr}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\\&\quad +{\cfrac {1}{r}}\left[{\frac {\partial S_{r\theta }}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{r\theta }}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{rz}}{\partial \theta }}-S_{\theta z}\right]~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\\&\quad +{\frac {\partial S_{rz}}{\partial z}}~\mathbf {e} _{r}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {\partial S_{\theta r}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta r}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}\\&\quad +{\frac {\partial S_{\theta \theta }}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta \theta }}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}+{\frac {\partial S_{\theta z}}{\partial r}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}\\&\quad +{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{\theta z}}{\partial z}}~\mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}+{\frac {\partial S_{zr}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{zr}}{\partial \theta }}-S_{z\theta }\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{\theta }\\&\quad +{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{r}\otimes \mathbf {e} _{z}+{\frac {\partial S_{z\theta }}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{z\theta }}{\partial \theta }}+S_{zr}\right]~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{\theta }\otimes \mathbf {e} _{z}\\&\quad +{\frac {\partial S_{zz}}{\partial r}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{r}+{\cfrac {1}{r}}~{\frac {\partial S_{zz}}{\partial \theta }}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\otimes \mathbf {e} _{z}\otimes \mathbf {e} _{z}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/757e0b753b3c6d9e2b58108a21b9da4fe14df3f4)
Divergence of a tensor field
The divergence of a tensor field
is defined using the recursive relation

where c is an arbitrary constant vector and v is a vector field. If
is a tensor field of order n > 1 then the divergence of the field is a tensor of order n−1.
Cartesian coordinates
Template:Einstein summation convention
In a Cartesian coordinate system we have the following relations for a vector field v and a second-order tensor field
.

Note that in the case of the second-order tensor field, we have[4]

Curvilinear coordinates
{{#invoke:main|main}}
Template:Einstein summation convention
In curvilinear coordinates, the divergences of a vector field v and a second-order tensor field
are

Cylindrical polar coordinates
In cylindrical polar coordinates
![{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\cdot \mathbf {v} &={\cfrac {\partial v_{r}}{\partial r}}+{\cfrac {1}{r}}\left({\cfrac {\partial v_{\theta }}{\partial \theta }}+v_{r}\right)+{\cfrac {\partial v_{z}}{\partial z}}\\{\boldsymbol {\nabla }}\cdot {\boldsymbol {S}}&={\frac {\partial S_{rr}}{\partial r}}~\mathbf {e} _{r}+{\frac {\partial S_{r\theta }}{\partial r}}~\mathbf {e} _{\theta }+{\frac {\partial S_{rz}}{\partial r}}~\mathbf {e} _{z}\\&+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta r}}{\partial \theta }}+(S_{rr}-S_{\theta \theta })\right]~\mathbf {e} _{r}+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta \theta }}{\partial \theta }}+(S_{r\theta }+S_{\theta r})\right]~\mathbf {e} _{\theta }+{\cfrac {1}{r}}\left[{\frac {\partial S_{\theta z}}{\partial \theta }}+S_{rz}\right]~\mathbf {e} _{z}\\&+{\frac {\partial S_{zr}}{\partial z}}~\mathbf {e} _{r}+{\frac {\partial S_{z\theta }}{\partial z}}~\mathbf {e} _{\theta }+{\frac {\partial S_{zz}}{\partial z}}~\mathbf {e} _{z}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5562be336f10361b0049f7f3608f04208a4c03f2)
Curl of a tensor field
The curl of an order-n > 1 tensor field
is also defined using the recursive relation

where c is an arbitrary constant vector and v is a vector field.
Curl of a first-order tensor (vector) field
Consider a vector field v and an arbitrary constant vector c. In index notation, the cross product is given by

where
is the permutation symbol. Then,

Therefore

Curl of a second-order tensor field
For a second-order tensor

Hence, using the definition of the curl of a first-order tensor field,

Therefore, we have

Identities involving the curl of a tensor field
The most commonly used identity involving the curl of a tensor field,
, is

This identity hold for tensor fields of all orders. For the important case of a second-order tensor,
, this identity implies that

Derivative of the determinant of a second-order tensor
The derivative of the determinant of a second order tensor
is given by
![{\displaystyle {\frac {\partial }{\partial {\boldsymbol {A}}}}\det({\boldsymbol {A}})=\det({\boldsymbol {A}})~[{\boldsymbol {A}}^{-1}]^{T}~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fb3bee9c5d16eb2b2f5d0827d4e39e8f83c65201)
In an orthonormal basis, the components of
can be written as a matrix A. In that case, the right hand side corresponds the cofactors of the matrix.
Derivatives of the invariants of a second-order tensor
The principal invariants of a second order tensor are
![{\displaystyle {\begin{aligned}I_{1}({\boldsymbol {A}})&={\text{tr}}{\boldsymbol {A}}\\I_{2}({\boldsymbol {A}})&={\frac {1}{2}}\left[({\text{tr}}{\boldsymbol {A}})^{2}-{\text{tr}}{{\boldsymbol {A}}^{2}}\right]\\I_{3}({\boldsymbol {A}})&=\det({\boldsymbol {A}})\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb5f440de0bb33a949001c6bef13f9f829fb1a42)
The derivatives of these three invariants with respect to
are
![{\displaystyle {\begin{aligned}{\frac {\partial I_{1}}{\partial {\boldsymbol {A}}}}&={\boldsymbol {\mathit {1}}}\\{\frac {\partial I_{2}}{\partial {\boldsymbol {A}}}}&=I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{T}\\{\frac {\partial I_{3}}{\partial {\boldsymbol {A}}}}&=\det({\boldsymbol {A}})~[{\boldsymbol {A}}^{-1}]^{T}=I_{2}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{T}~(I_{1}~{\boldsymbol {\mathit {1}}}-{\boldsymbol {A}}^{T})=({\boldsymbol {A}}^{2}-I_{1}~{\boldsymbol {A}}+I_{2}~{\boldsymbol {\mathit {1}}})^{T}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/958082555bbf6e268f358d1286fab2eef6d5d5d0)
Derivative of the second-order identity tensor
Let
be the second order identity tensor. Then the derivative of this tensor with respect to a second order tensor
is given by

This is because
is independent of
.
Derivative of a second-order tensor with respect to itself
Let
be a second order tensor. Then
![{\displaystyle {\frac {\partial {\boldsymbol {A}}}{\partial {\boldsymbol {A}}}}:{\boldsymbol {T}}=\left[{\frac {\partial }{\partial \alpha }}({\boldsymbol {A}}+\alpha ~{\boldsymbol {T}})\right]_{\alpha =0}={\boldsymbol {T}}={\boldsymbol {\mathsf {I}}}:{\boldsymbol {T}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d4cf9341eabbe69c48f4ff85db571b84c8b2c318)
Therefore,

Here
is the fourth order identity tensor. In index
notation with respect to an orthonormal basis

This result implies that

where

Therefore, if the tensor
is symmetric, then the derivative is also symmetric and
we get

where the symmetric fourth order identity tensor is

Derivative of the inverse of a second-order tensor
Let
and
be two second order tensors, then

In index notation with respect to an orthonormal basis

We also have

In index notation

If the tensor
is symmetric then

Integration by parts
Another important operation related to tensor derivatives in continuum mechanics is integration by parts. The formula for integration by parts can be written as

where
and
are differentiable tensor fields of arbitrary order,
is the unit outward normal to the domain over which the tensor fields are defined,
represents a generalized tensor product operator, and
is a generalized gradient operator. When
is equal to the identity tensor, we get the divergence theorem

We can express the formula for integration by parts in Cartesian index notation as

For the special case where the tensor product operation is a contraction of one index and the gradient operation is a divergence, and both
and
are second order tensors, we have

In index notation,

References
{{ safesubst:#invoke:Unsubst||$N=Citation style |date=__DATE__ |$B=
{{#invoke:Message box|ambox}}
}}
- ↑ J. C. Simo and T. J. R. Hughes, 1998, Computational Inelasticity, Springer
- ↑ J. E. Marsden and T. J. R. Hughes, 2000, Mathematical Foundations of Elasticity, Dover.
- ↑ Ogden, R. W., 2000, Nonlinear Elastic Deformations, Dover.
- ↑ http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/Chapter_1_Vectors_Tensors/Vectors_Tensors_14_Tensor_Calculus.pdf
See also