# Toroidal coordinates

**Toroidal coordinates** are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

## Definition

The most common definition of toroidal coordinates is

where the coordinate of a point equals the angle and the coordinate equals the natural logarithm of the ratio of the distances and to opposite sides of the focal ring

The coordinate ranges are and and

### Coordinate surfaces

Surfaces of constant correspond to spheres of different radii

that all pass through the focal ring but are not concentric. The surfaces of constant are non-intersecting tori of different radii

that surround the focal ring. The centers of the constant- spheres lie along the -axis, whereas the constant- tori are centered in the plane.

### Inverse transformation

The (σ, τ, φ) coordinates may be calculated from the Cartesian coordinates (*x*, *y*, *z*) as follows. The azimuthal angle φ is given by the formula

The cylindrical radius ρ of the point P is given by

and its distances to the foci in the plane defined by φ is given by

The coordinate τ equals the natural logarithm of the focal distances

whereas the coordinate σ equals the angle between the rays to the foci, which may be determined from the law of cosines

where the sign of σ is determined by whether the coordinate surface sphere is above or below the *x*-*y* plane.

### Scale factors

The scale factors for the toroidal coordinates and are equal

whereas the azimuthal scale factor equals

Thus, the infinitesimal volume element equals

and the Laplacian is given by

Other differential operators such as and can be expressed in the coordinates by substituting the scale factors into the general formulae found in orthogonal coordinates.

## Toroidal harmonics

### Standard separation

The 3-variable Laplace equation

admits solution via separation of variables in toroidal coordinates. Making the substitution

A separable equation is then obtained. A particular solution obtained by separation of variables is:

where each function is a linear combination of:

Where P and Q are associated Legendre functions of the first and second kind. These Legendre functions are often referred to as toroidal harmonics.

Toroidal harmonics have many interesting properties. If you make a variable substitution then, for instance, with vanishing order (the convention is to not write the order when it vanishes) and

and

where and are the complete elliptic integrals of the first and second kind respectively. The rest of the toroidal harmonics can be obtained, for instance, in terms of the complete elliptic integrals, by using recurrence relations for associated Legendre functions.

The classic applications of toroidal coordinates are in solving partial differential equations, e.g., Laplace's equation for which toroidal coordinates allow a separation of variables or the Helmholtz equation, for which toroidal coordinates do not allow a separation of variables. Typical examples would be the electric potential and electric field of a conducting torus, or in the degenerate case, a conducting ring.

### An alternative separation

Alternatively, a different substitution may be made (Andrews 2006)

where

Again, a separable equation is obtained. A particular solution obtained by separation of variables is then:

where each function is a linear combination of:

Note that although the toroidal harmonics are used again for the *T* function, the argument is rather than and the and indices are exchanged. This method is useful for situations in which the boundary conditions are independent of the spherical angle , such as the charged ring, an infinite half plane, or two parallel planes. For identities relating the toroidal harmonics with argument hyperbolic
cosine with those of argument hyperbolic cotangent, see the Whipple formulae.

## References

- Byerly, W E. (1893)
*An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics, with applications to problems in mathematical physics*Ginn & co. pp. 264–266 - {{#invoke:citation/CS1|citation

|CitationClass=book }}

- {{#invoke:Citation/CS1|citation

|CitationClass=journal }}

## Bibliography

- {{#invoke:citation/CS1|citation

|CitationClass=book }}

- {{#invoke:citation/CS1|citation

|CitationClass=book }}

- {{#invoke:citation/CS1|citation

|CitationClass=book }}

- {{#invoke:citation/CS1|citation

|CitationClass=book }}