Trembling hand perfect equilibrium

From formulasearchengine
Jump to navigation Jump to search

29 yr old Orthopaedic Surgeon Grippo from Saint-Paul, spends time with interests including model railways, top property developers in singapore developers in singapore and dolls. Finished a cruise ship experience that included passing by Runic Stones and Church.

In mathematics, majorization is a preorder on vectors of real numbers. For a vector ad, we denote by ad the vector with the same components, but sorted in descending order. Given a,bd, we say that a weakly majorizes (or dominates) b from below written as awb iff

i=1kaii=1kbifor k=1,,d,

where ai and bi are the elements of a and b, respectively, sorted in decreasing order. Equivalently, we say that b is weakly majorized (or dominated) by a from below, denoted as bwa.

Similarly, we say that a weakly majorizes b from above written as awb iff

i=kdaii=kdbifor k=1,,d,

Equivalently, we say that b is weakly majorized by a from above, denoted as bwa.

If awb and in addition i=1dai=i=1dbi we say that a majorizes (or dominates) b written as ab. Equivalently, we say that b is majorized (or dominated) by a, denoted as ba.

It is easy to see that ab if and only if awb and awb.

Note that the majorization order do not depend on the order of the components of the vectors a or b. Majorization is not a partial order, since ab and ba do not imply a=b, it only implies that the components of each vector are equal, but not necessarily in the same order.

Regrettably, to confuse the matter, some literature sources use the reverse notation, e.g., is replaced with , most notably, in Horn and Johnson, Matrix analysis (Cambridge Univ. Press, 1985), Definition 4.3.24, while the same authors switch to the traditional notation, introduced here, later in their Topics in Matrix Analysis (1994).

A function f:d is said to be Schur convex when ab implies f(a)f(b). Similarly, f(a) is Schur concave when ab implies f(a)f(b).

The majorization partial order on finite sets, described here, can be generalized to the Lorenz ordering, a partial order on distribution functions.

Examples

The order of the entries does not affect the majorization, e.g., the statement (1,2)(0,3) is simply equivalent to (2,1)(3,0).

(Strong) majorization: (1,2,3)(0,3,3)(0,0,6). For vectors with n components

(1n,,1n)(1n1,,1n1,0)(12,12,0,,0)(1,0,,0).

(Weak) majorization: (1,2,3)w(1,3,3)w(1,3,4). For vectors with n components:

(1n,,1n)w(1n1,,1n1,1).

Geometry of Majorization

Figure 1. 2D Majorization Example

For x,yn, we have xy if and only if x is in the convex hull of all vectors obtained by permuting the coordinates of y.

Figure 1 displays the convex hull in 2D for the vector y=(3,1). Notice that the center of the convex hull, which is an interval in this case, is the vector x=(2,2). This is the "smallest" vector satisfying xy for this given vector y.

Figure 2. 3D Majorization Example

Figure 2 shows the convex hull in 3D. The center of the convex hull, which is a 2D polygon in this case, is the "smallest" vector x satisfying xy for this given vector y.

Equivalent conditions

Each of the following statements is true if and only if ab:

In linear algebra

In recursion theory

Given f,g:, then f is said to majorize g if, for all x, f(x)g(x). If there is some n so that f(x)g(x) for all x>n, then f is said to dominate (or eventually dominate) g. Alternatively, the preceding terms are often defined requiring the strict inequality f(x)>g(x) instead of f(x)g(x) in the foregoing definitions.

Generalizations

Various generalizations of majorization are discussed in chapters 14 and 15 of the reference work Inequalities: Theory of Majorization and Its Applications (In preparation) Albert W. Marshall, Ingram Olkin, Barry Arnold, ISBN 978-0-387-40087-7.

See also

Notes

  1. 1.0 1.1 1.2 Barry C. Arnold. "Majorization and the Lorenz Order: A Brief Introduction". Springer-Verlag Lecture Notes in Statistics, vol. 43, 1987.
  2. Nielsen and Chuang. "Quantum Computation and Quantum Information". Cambridge University Press, 2000

References

  • J. Karamata. Sur une inegalite relative aux fonctions convexes. Publ. Math. Univ. Belgrade 1, 145–158, 1932.
  • G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd edition, 1952, Cambridge University Press, London.
  • Inequalities: Theory of Majorization and Its Applications (In preparation) Albert W. Marshall, Ingram Olkin, Barry Arnold, ISBN 978-0-387-40087-7
  • Inequalities: Theory of Majorization and Its Applications (1980) Albert W. Marshall, Ingram Olkin, Academic Press, ISBN 978-0-12-473750-1
  • A tribute to Marshall and Olkin's book "Inequalities: Theory of Majorization and its Applications"
  • Quantum Computation and Quantum Information, (2000) Michael A. Nielsen and Isaac L. Chuang, Cambridge University Press, ISBN 978-0-521-63503-5
  • Matrix Analysis (1996) Rajendra Bhatia, Springer, ISBN 978-0-387-94846-1
  • Topics in Matrix Analysis (1994) Roger A. Horn and Charles R. Johnson, Cambridge University Press, ISBN 978-0-521-46713-1
  • Majorization and Matrix Monotone Functions in Wireless Communications (2007) Eduard Jorswieck and Holger Boche, Now Publishers, ISBN 978-1-60198-040-3
  • The Cauchy Schwarz Master Class (2004) J. Michael Steele, Cambridge University Press, ISBN 978-0-521-54677-5

External links

Software