1 − 2 + 3 − 4 + · · ·

From formulasearchengine
Jump to navigation Jump to search

Eilenberg's inequality is a mathematical inequality for Lipschitz-continuous functions.

Let ƒ : X → Y be a Lipschitz-continuous function between separable metric spaces whose Lipschitz constant is denoted by Lip ƒ. Then, Eilenberg's inequality states that

Y*Hmn(Af1(y))dHn(y)vmnvnvm(Lip f)nHm(A),

for any A ⊂ X and all 0 ≤ n ≤ m, where

References

  • Yu. D. Burago and V. A. Zalgaller, Geometric inequalities. Translated from the Russian by A. B. Sosinskiĭ. Springer-Verlag, Berlin, 1988. ISBN 3-540-13615-0.