Snell envelope

From formulasearchengine
Jump to navigation Jump to search

{{ safesubst:#invoke:Unsubst||$N=Refimprove |date=__DATE__ |$B= {{#invoke:Message box|ambox}} }}

The Snell envelope, used in stochastics and mathematical finance, is the smallest supermartingale dominating a stochastic process. The Snell envelope is named after James Laurie Snell.

Definition

Given a filtered probability space and an absolutely continuous probability measure then an adapted process is the Snell envelope with respect to of the process if

  1. is a -supermartingale
  2. dominates , i.e. -almost surely for all times
  3. If is a -supermartingale which dominates , then dominates .[1]

Construction

Given a (discrete) filtered probability space and an absolutely continuous probability measure then the Snell envelope with respect to of the process is given by the recursive scheme

for

where is the join.[1]

Application

References

  1. 1.0 1.1 1.2 {{#invoke:citation/CS1|citation |CitationClass=book }}