Experimental mathematics: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Virginia-American
m →‎See also: link Boarwein integral
 
en>Legobot
m BOT: Dating templates: {{dead link}} (1). Errors? stop me
Line 1: Line 1:
It is time to address the slow computer issues even if we do not recognize how. Just considering your computer is functioning thus slow or keeps freezing up; refuses to signify which you can not address the problem plus fix it. You may or may not be aware which any computer owner must recognize which there are certain aspects that your computer needs to maintain the best performance. The sad fact is that a lot of persons that own a program have no idea which it needs routine maintenance merely like their cars.<br><br>Many of the reliable firms may provide a full money back guarantee. This means that you have the chance to receive your cash back should you find the registry cleaning has not delivered what you expected.<br><br>H/w connected error handling - when hardware causes BSOD installing newest fixes for the hardware and/ or motherboard may aid. We can moreover add new hardware that is compatible with the program.<br><br>If you feel you don't have enough income at the time to upgrade, then the number one option is to free up certain room by deleting a few of the unwelcome files plus folders.<br><br>Besides, should you may receive a [http://bestregistrycleanerfix.com/registry-reviver registry reviver] which can work for you effectively and instantly, then why not? There is one such system, RegCure that is truly good plus complete. It has qualities that alternative cleaners never have. It is the many recommended registry cleaner today.<br><br>S/w associated error handling - If the blue screen physical memory dump occurs after the installation of s/w application or perhaps a driver it might be that there is program incompatibility. By booting into secure mode and removing the software you are able to instantly fix this error. We may also try out a "system restore" to revert to an earlier state.<br><br>Most likely if you are experiencing a slow computer it may be a couple years aged. We also could not have been told that while we use a computer everyday; there are certain factors which it needs to continue running in its ideal performance. We equally will not even own any diagnostic tools that usually get a PC running like new again. Well never let which stop you from getting your program cleaned. With access to the web you will find the tools that will assist we receive your program running like new again.<br><br>There are numerous firms that offer the service of troubleshooting the PC every time you call them, all you must do is sign up with them and for a small fee, you could have a machine usually functioning effectively plus serve we better.
In [[mathematics]], [[physics]], and [[engineering]], a '''tensor field''' assigns a [[tensor]] to each point of a mathematical space (typically a [[Euclidean space]] or [[manifold]]). Tensor fields are used in [[differential geometry]], [[algebraic geometry]], [[general relativity]], in the analysis of [[stress (physics)|stress]] and [[strain tensor|strain]] in materials, and in numerous applications in the physical sciences and engineering. As a tensor is a generalization of a [[scalar (physics)|scalar]] (a pure number representing a value, like length) and a [[Euclidean vector|vector]] (a geometrical arrow in space), a tensor field is a generalization of a [[scalar field]] or [[vector field]] that assigns, respectively, a scalar or vector to each point of space.
 
Many mathematical structures informally called 'tensors' are actually 'tensor fields'.  An example is the [[Riemann curvature tensor]].
 
==Geometric introduction==
 
Intuitively, a vector field is best visualized as an 'arrow' attached to each point of a region, with variable length and direction. One example of a vector field on a curved space is a weather map showing horizontal wind velocity at each point of the Earth's surface.
 
The general idea of tensor field combines the requirement of richer geometry – for example,  an [[ellipsoid]] varying from point to point, in the case of a [[metric tensor]] – with the idea that we don't want our notion to depend on the particular method of mapping the surface. It should exist independently of latitude and longitude, or whatever particular 'cartographic projection' we are using to introduce numerical coordinates.
 
== The vector bundle explanation ==
{{main|Tensor bundle}}
The contemporary mathematical expression of the idea of tensor field breaks it down into a two-step concept.
 
There is the idea of [[vector bundle]], which is a natural idea of '[[vector space]] depending on parameters' – the parameters being in a manifold. For example a ''vector space of one dimension depending on an angle'' could look like a [[Möbius strip]] as well as a [[cylinder (geometry)|cylinder]]. Given a vector bundle ''V'' over ''M'', the corresponding field concept is called a ''section'' of the bundle: for ''m'' varying over ''M'', a choice of vector
 
:''v<sub>m</sub>'' in ''V<sub>m</sub>'',
 
the vector space 'at' ''m''.
 
Since the [[tensor product]] concept is independent of any choice of basis, taking the tensor product of two vector bundles on ''M'' is routine. Starting with the [[tangent bundle]] (the bundle of [[tangent space]]s) the whole apparatus explained at [[component-free treatment of tensors]] carries over in a routine way – again independently of coordinates, as mentioned in the introduction.
 
We therefore can give a definition of '''tensor field''', namely as a [[section (fiber bundle)|section]] of some [[tensor bundle]].  (There are vector bundles which are not tensor bundles: the Möbius band for instance.) This is then guaranteed geometric content, since everything has been done in an intrinsic way. More precisely, a tensor field assigns to any given point of the manifold a tensor in the space
 
:<math>V \otimes \cdots \otimes V \otimes V^* \otimes  \cdots  \otimes V^*</math>
 
where V is the [[tangent space]] at that point and V* is the [[cotangent space]]. See also [[tangent bundle]] and [[cotangent bundle]].
 
Given two tensor bundles ''E'' → ''M'' and ''F'' → ''M'', a map ''A'': Γ(''E'') → Γ(''F'') from the space of sections of ''E'' to sections of ''F'' can be considered itself as a tensor section of <math>\scriptstyle E^*\otimes F</math> if and only if it satisfies ''A''(''fs'',...) = ''fA''(''s'',...) in each argument, where ''f'' is a smooth function on ''M''.  Thus a tensor is not only a linear map on the vector space of sections, but a ''C''<sup></sup>(''M'')-linear map on the module of sections.  This property is used to check, for example, that even though the [[Lie derivative]] and [[covariant derivative]] are not tensors, the [[torsion tensor|torsion]] and [[Affine connection|curvature tensors]] built from them are.
 
==Notation==
 
The notation for tensor fields can sometimes be confusingly similar to the notation for tensor spaces.  Thus, the tangent bundle ''TM'' = ''T''(''M'') might sometimes be written as
:<math>T_0^1(M)=T(M) =TM </math>
to emphasize that the tangent bundle is the range space of the (1,0) tensor fields (i.e., vector fields) on the manifold ''M''.  Do not confuse this with the very similar looking notation
 
:<math>T_0^1(V)</math>;
 
in the latter case, we just have one tensor space, whereas in the former, we have a tensor space defined for each point in the manifold ''M''.
 
Curly (script) letters are sometimes used to denote the set of [[smooth function|infinitely-differentiable]] tensor fields on ''M''. Thus,
:<math>\mathcal{T}^m_n(M)</math>
are the sections of the (''m'',''n'') tensor bundle on ''M'' which are infinitely-differentiable. A tensor field is an element of this set.
 
== The ''C''<sup>∞</sup>(''M'') module explanation ==
There is another more abstract (but often useful) way of characterizing tensor fields on a manifold ''M'' which turns out to actually make tensor fields into honest tensors (i.e. ''single'' multilinear mappings), though of a different type (and this is ''not'' usually why one often says "tensor" when one really means "tensor field"). First, we may consider the set of all smooth (C<sup></sup>) vector fields on ''M'', <math>\mathcal{T}(M)</math> (see the section on notation above) as a single space &3; a [[module (mathematics)|module]] over the [[ring (mathematics)|ring]] of smooth functions, ''C''<sup>∞</sup>(''M''), by pointwise scalar multiplication. The notions of multilinearity and tensor products extend easily to the case of modules over any commutative ring.
 
As a motivating example, consider the space <math>\mathcal{T}^*(M)</math> of smooth covector fields ([[differential form|1-forms]]), also a module over the smooth functions. These act on smooth vector fields to yield smooth functions by pointwise evaluation, namely, given a covector field ''ω'' and a vector field ''X'', we define
 
:(''ω''(''X''))(''p'') = ''ω''(''p'')(''X''(''p'')).
 
Because of the pointwise nature of everything involved, the action of ''ω'' on ''X'' is a ''C''<sup>∞</sup>(''M'')-linear map, that is,
 
:(''ω''(''fX''))(''p'') = ''f''(''p'') ''ω''(''p'')(''X''(''p'')) = (''fω'')(''p'')(''X''(''p''))
 
for any ''p'' in ''M'' and smooth function ''f''. Thus we can regard covector fields not just as sections of the cotangent bundle, but also linear mappings of vector fields into functions. By the double-dual construction, vector fields can similarly be expressed as mappings of covector fields into functions (namely, we could start "natively" with covector fields and work up from there).
 
In a complete parallel to the construction of ordinary single tensors (not fields!) on ''M''  as multilinear maps on vectors and covectors, we can regard general (''k'',''l'') tensor fields on ''M''  as  ''C''<sup>∞</sup>(''M'')-multilinear maps defined on ''l'' copies of <math>\mathcal{T}(M)</math> and ''k'' copies of <math>\mathcal{T}^*(M)</math> into ''C''<sup></sup>(''M'').
 
Now, given any arbitrary mapping ''T'' from a product of ''k'' copies of <math>\mathcal{T}^*(M)</math> and  ''l'' copies of <math>\mathcal{T}(M)</math> into ''C''<sup>∞</sup>(''M''), it turns out that it arises from a tensor field on ''M'' if and only if it is a multilinear over ''C''<sup>∞</sup>(''M''). Thus this kind of multilinearity implicitly expresses the fact that we're really dealing with a pointwise-defined object, i.e. a tensor field, as opposed to a function which, even when evaluated at a single point, depends on all the values of vector fields and 1-forms simultaneously.
 
A frequent example application of this general rule is showing that the [[Levi-Civita connection]], which is a mapping of smooth vector fields <math>(X,Y) \mapsto \nabla_{X} Y</math> taking a pair of vector fields to a vector field, does not define a tensor field on ''M''. This is because it is only ''R''-linear in ''Y'' (in place of full ''C''<sup>∞</sup>(''M'')-linearity, it satisfies the ''Leibniz rule,'' <math>\nabla_{X}(fY) = (Xf) Y +f \nabla_X Y</math>)). Nevertheless it must be stressed that even though it is not a tensor field, it still qualifies as a geometric object with a component-free interpretation.
 
==Applications==
 
The curvature tensor is discussed in differential geometry and the [[stress–energy tensor]] is important in physics and engineering. Both of these are related by Einstein's theory of [[general relativity]]. In engineering, the underlying manifold will often be [[Euclidean space|Euclidean 3-space]].
 
It is worth noting that [[differential form]]s, used in defining integration on manifolds, are a type of tensor field.
 
==Tensor calculus==
 
In [[theoretical physics]] and other fields, [[differential equation]]s posed in terms of tensor fields provide a very general way to express relationships that are both geometric in nature (guaranteed by the tensor nature) and conventionally linked to [[differential calculus]]. Even to formulate such equations requires a fresh notion, the [[covariant derivative]]. This handles the formulation of variation of a tensor field ''along'' a [[vector field]]. The original ''absolute differential calculus'' notion, which was later called ''tensor calculus'', led to the isolation of the geometric concept of [[connection (differential geometry)|connection]].
 
==Twisting by a line bundle==
 
An extension of the tensor field idea incorporates an extra [[line bundle]] ''L'' on ''M''. If ''W'' is the tensor product bundle of ''V'' with ''L'', then ''W'' is a bundle of vector spaces of just the same dimension as ''V''. This allows one to define the concept of '''tensor density''', a 'twisted' type of tensor field. A ''tensor density'' is the special case where ''L'' is the bundle of ''densities on a manifold'', namely the [[determinant bundle]] of the [[cotangent bundle]]. (To be strictly accurate, one should also apply the [[absolute value]] to the [[Topology|transition functions]] – this makes little difference for an [[orientable manifold]].) For a more traditional explanation see the [[tensor density]] article.
 
One feature of the bundle of densities (again assuming orientability) ''L'' is that ''L''<sup>''s''</sup> is well-defined for real number values of ''s''; this can be read from the transition functions, which take strictly positive real values. This means for example that we can take a ''half-density'', the case where ''s'' = ½. In general we can take sections of ''W'', the tensor product of ''V'' with ''L''<sup>''s''</sup>, and consider '''tensor density fields''' with weight ''s''.
 
Half-densities are applied in areas such as defining [[integral operator]]s on manifolds, and [[geometric quantization]].
 
==The flat case==
 
When ''M'' is a [[Euclidean space]] and all the fields are taken to be invariant by [[translation (geometry)|translations]] by the vectors of ''M'', we get back to a situation where a tensor field is synonymous with a tensor 'sitting at the origin'. This does no great harm, and is often used in applications. As applied to tensor densities, it ''does'' make a difference. The bundle of densities cannot seriously be defined 'at a point'; and therefore a limitation of the contemporary mathematical treatment of tensors is that tensor densities are defined in a roundabout fashion.
 
==Cocycles and chain rules==
 
As an advanced explanation of the ''tensor'' concept, one can interpret the [[chain rule]] in the multivariable case, as applied to coordinate changes, also as the requirement for self-consistent concepts of tensor giving rise to tensor fields.
 
Abstractly, we can identify the chain rule as a 1-[[cocycle]]{{Disambiguation needed|date=June 2011}}. It gives the consistency required to define the tangent bundle in an intrinsic way. The other vector bundles of tensors have comparable cocycles, which come from applying [[functorial]] properties of tensor constructions to the chain rule itself; this is why they also are intrinsic (read, 'natural') concepts.
 
What is usually spoken of as the 'classical' approach to tensors tries to read this backwards – and is therefore a heuristic, ''post hoc'' approach rather than truly a foundational one. Implicit in defining tensors by how they transform under a coordinate change is the kind of self-consistency the cocycle expresses. The construction of tensor densities is a 'twisting' at the cocycle level. Geometers have not been in any doubt about the ''geometric'' nature of tensor ''quantities''; this kind of [[descent (category theory)|descent]] argument justifies abstractly the whole theory.
 
==See also==
 
*[[Ricci calculus]]
*[[Jet bundle]]
*[[Spinor field]]
 
==References==
 
* The Geometry of Physics (3rd edition), T. Frankel, Cambridge University Press, 2012, ISBN 978-1107-602601
* McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
* Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3
* Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0
* Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145545-0
* Relativity, Gravitation, and Cosmology, R.J.A. Lambourne, Open University, Cambridge University Press, 2010, ISBN 9-780521-131384
 
{{tensors}}
 
[[Category:Multilinear algebra]]
[[Category:Differential geometry]]
[[Category:Differential topology]]

Revision as of 22:00, 13 June 2013

In mathematics, physics, and engineering, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences and engineering. As a tensor is a generalization of a scalar (a pure number representing a value, like length) and a vector (a geometrical arrow in space), a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space.

Many mathematical structures informally called 'tensors' are actually 'tensor fields'. An example is the Riemann curvature tensor.

Geometric introduction

Intuitively, a vector field is best visualized as an 'arrow' attached to each point of a region, with variable length and direction. One example of a vector field on a curved space is a weather map showing horizontal wind velocity at each point of the Earth's surface.

The general idea of tensor field combines the requirement of richer geometry – for example, an ellipsoid varying from point to point, in the case of a metric tensor – with the idea that we don't want our notion to depend on the particular method of mapping the surface. It should exist independently of latitude and longitude, or whatever particular 'cartographic projection' we are using to introduce numerical coordinates.

The vector bundle explanation

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. The contemporary mathematical expression of the idea of tensor field breaks it down into a two-step concept.

There is the idea of vector bundle, which is a natural idea of 'vector space depending on parameters' – the parameters being in a manifold. For example a vector space of one dimension depending on an angle could look like a Möbius strip as well as a cylinder. Given a vector bundle V over M, the corresponding field concept is called a section of the bundle: for m varying over M, a choice of vector

vm in Vm,

the vector space 'at' m.

Since the tensor product concept is independent of any choice of basis, taking the tensor product of two vector bundles on M is routine. Starting with the tangent bundle (the bundle of tangent spaces) the whole apparatus explained at component-free treatment of tensors carries over in a routine way – again independently of coordinates, as mentioned in the introduction.

We therefore can give a definition of tensor field, namely as a section of some tensor bundle. (There are vector bundles which are not tensor bundles: the Möbius band for instance.) This is then guaranteed geometric content, since everything has been done in an intrinsic way. More precisely, a tensor field assigns to any given point of the manifold a tensor in the space

where V is the tangent space at that point and V* is the cotangent space. See also tangent bundle and cotangent bundle.

Given two tensor bundles EM and FM, a map A: Γ(E) → Γ(F) from the space of sections of E to sections of F can be considered itself as a tensor section of if and only if it satisfies A(fs,...) = fA(s,...) in each argument, where f is a smooth function on M. Thus a tensor is not only a linear map on the vector space of sections, but a C(M)-linear map on the module of sections. This property is used to check, for example, that even though the Lie derivative and covariant derivative are not tensors, the torsion and curvature tensors built from them are.

Notation

The notation for tensor fields can sometimes be confusingly similar to the notation for tensor spaces. Thus, the tangent bundle TM = T(M) might sometimes be written as

to emphasize that the tangent bundle is the range space of the (1,0) tensor fields (i.e., vector fields) on the manifold M. Do not confuse this with the very similar looking notation

;

in the latter case, we just have one tensor space, whereas in the former, we have a tensor space defined for each point in the manifold M.

Curly (script) letters are sometimes used to denote the set of infinitely-differentiable tensor fields on M. Thus,

are the sections of the (m,n) tensor bundle on M which are infinitely-differentiable. A tensor field is an element of this set.

The C(M) module explanation

There is another more abstract (but often useful) way of characterizing tensor fields on a manifold M which turns out to actually make tensor fields into honest tensors (i.e. single multilinear mappings), though of a different type (and this is not usually why one often says "tensor" when one really means "tensor field"). First, we may consider the set of all smooth (C) vector fields on M, (see the section on notation above) as a single space &3; a module over the ring of smooth functions, C(M), by pointwise scalar multiplication. The notions of multilinearity and tensor products extend easily to the case of modules over any commutative ring.

As a motivating example, consider the space of smooth covector fields (1-forms), also a module over the smooth functions. These act on smooth vector fields to yield smooth functions by pointwise evaluation, namely, given a covector field ω and a vector field X, we define

(ω(X))(p) = ω(p)(X(p)).

Because of the pointwise nature of everything involved, the action of ω on X is a C(M)-linear map, that is,

(ω(fX))(p) = f(p) ω(p)(X(p)) = ()(p)(X(p))

for any p in M and smooth function f. Thus we can regard covector fields not just as sections of the cotangent bundle, but also linear mappings of vector fields into functions. By the double-dual construction, vector fields can similarly be expressed as mappings of covector fields into functions (namely, we could start "natively" with covector fields and work up from there).

In a complete parallel to the construction of ordinary single tensors (not fields!) on M as multilinear maps on vectors and covectors, we can regard general (k,l) tensor fields on M as C(M)-multilinear maps defined on l copies of and k copies of into C(M).

Now, given any arbitrary mapping T from a product of k copies of and l copies of into C(M), it turns out that it arises from a tensor field on M if and only if it is a multilinear over C(M). Thus this kind of multilinearity implicitly expresses the fact that we're really dealing with a pointwise-defined object, i.e. a tensor field, as opposed to a function which, even when evaluated at a single point, depends on all the values of vector fields and 1-forms simultaneously.

A frequent example application of this general rule is showing that the Levi-Civita connection, which is a mapping of smooth vector fields taking a pair of vector fields to a vector field, does not define a tensor field on M. This is because it is only R-linear in Y (in place of full C(M)-linearity, it satisfies the Leibniz rule, )). Nevertheless it must be stressed that even though it is not a tensor field, it still qualifies as a geometric object with a component-free interpretation.

Applications

The curvature tensor is discussed in differential geometry and the stress–energy tensor is important in physics and engineering. Both of these are related by Einstein's theory of general relativity. In engineering, the underlying manifold will often be Euclidean 3-space.

It is worth noting that differential forms, used in defining integration on manifolds, are a type of tensor field.

Tensor calculus

In theoretical physics and other fields, differential equations posed in terms of tensor fields provide a very general way to express relationships that are both geometric in nature (guaranteed by the tensor nature) and conventionally linked to differential calculus. Even to formulate such equations requires a fresh notion, the covariant derivative. This handles the formulation of variation of a tensor field along a vector field. The original absolute differential calculus notion, which was later called tensor calculus, led to the isolation of the geometric concept of connection.

Twisting by a line bundle

An extension of the tensor field idea incorporates an extra line bundle L on M. If W is the tensor product bundle of V with L, then W is a bundle of vector spaces of just the same dimension as V. This allows one to define the concept of tensor density, a 'twisted' type of tensor field. A tensor density is the special case where L is the bundle of densities on a manifold, namely the determinant bundle of the cotangent bundle. (To be strictly accurate, one should also apply the absolute value to the transition functions – this makes little difference for an orientable manifold.) For a more traditional explanation see the tensor density article.

One feature of the bundle of densities (again assuming orientability) L is that Ls is well-defined for real number values of s; this can be read from the transition functions, which take strictly positive real values. This means for example that we can take a half-density, the case where s = ½. In general we can take sections of W, the tensor product of V with Ls, and consider tensor density fields with weight s.

Half-densities are applied in areas such as defining integral operators on manifolds, and geometric quantization.

The flat case

When M is a Euclidean space and all the fields are taken to be invariant by translations by the vectors of M, we get back to a situation where a tensor field is synonymous with a tensor 'sitting at the origin'. This does no great harm, and is often used in applications. As applied to tensor densities, it does make a difference. The bundle of densities cannot seriously be defined 'at a point'; and therefore a limitation of the contemporary mathematical treatment of tensors is that tensor densities are defined in a roundabout fashion.

Cocycles and chain rules

As an advanced explanation of the tensor concept, one can interpret the chain rule in the multivariable case, as applied to coordinate changes, also as the requirement for self-consistent concepts of tensor giving rise to tensor fields.

Abstractly, we can identify the chain rule as a 1-cocycleTemplate:Disambiguation needed. It gives the consistency required to define the tangent bundle in an intrinsic way. The other vector bundles of tensors have comparable cocycles, which come from applying functorial properties of tensor constructions to the chain rule itself; this is why they also are intrinsic (read, 'natural') concepts.

What is usually spoken of as the 'classical' approach to tensors tries to read this backwards – and is therefore a heuristic, post hoc approach rather than truly a foundational one. Implicit in defining tensors by how they transform under a coordinate change is the kind of self-consistency the cocycle expresses. The construction of tensor densities is a 'twisting' at the cocycle level. Geometers have not been in any doubt about the geometric nature of tensor quantities; this kind of descent argument justifies abstractly the whole theory.

See also

References

  • The Geometry of Physics (3rd edition), T. Frankel, Cambridge University Press, 2012, ISBN 978-1107-602601
  • McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
  • Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3
  • Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0
  • Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145545-0
  • Relativity, Gravitation, and Cosmology, R.J.A. Lambourne, Open University, Cambridge University Press, 2010, ISBN 9-780521-131384

Template:Tensors