Main Page: Difference between revisions
Sheila5409 (talk | contribs) mNo edit summary |
Replaced content with "<br><br>Here's more info on [http://kanarea.dothome.co.kr/xe/?document_srl=226691 Nebraska Speed Dating] look at our web site." |
||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:G<sub>δ</sub> set}} | |||
In the mathematical field of [[topology]], a '''G<sub>δ</sub> set''' is a [[subset]] of a [[topological space]] that is a countable intersection of open sets. The notation originated in [[Germany]] with ''G'' for ''[[wikt:Gebiet#German|Gebiet]]'' (''[[German language|German]]'': area, or neighborhood) meaning [[open set]] in this case and δ for ''[[wikt:Durchschnitt#German|Durchschnitt]]'' (''German'': [[intersection (set theory)|intersection]]). | |||
The term '''inner limiting set''' is also used. G<sub>δ</sub> sets, and their dual [[F-sigma set|F<sub>σ</sub> sets]], are the second level of the [[Borel hierarchy]]. | |||
In | ==Definition== | ||
In a topological space a '''G<sub>δ</sub> set''' is a [[countable]] [[intersection (set theory)|intersection]] of [[open set]]s. The G<sub>δ</sub> sets are exactly the level <math>\mathbf{\Pi}^0_2</math> sets of the [[Borel hierarchy]]. | |||
==Examples== | |||
* Any open set is trivially a G<sub>δ</sub> set | |||
* The [[irrational numbers]] are a G<sub>δ</sub> set in '''R''', the real numbers, as they can be written as the intersection over all [[rational number|rational]] numbers ''q'' of the [[complement (set theory)|complement]] of {''q''} in '''R'''. Note that the set of [[Rational number|rational]] numbers is not a G<sub>δ</sub> set in '''R'''. | |||
* The rational numbers '''Q''' are '''not''' a G<sub>δ</sub> set. If we were able to write '''Q''' as the intersection of open sets ''A<sub>n</sub>'', each ''A<sub>n</sub>'' would have to be [[dense set|dense]] in '''R''' since '''Q''' is dense in '''R'''. However, the construction above gave the irrational numbers as a countable intersection of open dense subsets. Taking the intersection of both of these sets gives the [[empty set]] as a countable intersection of open dense sets in '''R''', a violation of the [[Baire category theorem]]. | |||
* The zero-set of a derivative of an everywhere differentiable real-valued function on '''R''' is a G<sub>δ</sub> set; it can be a dense set with empty interior, as shown by [[Pompeiu derivative#Pompeiu's construction|Pompeiu's construction]]. | |||
The | |||
A more elaborate example of a G<sub>δ</sub> set is given by the following theorem: | |||
[[ | '''Theorem:''' The set <math>D=\left\{f \in C([0,1]) : f \text{ is not differentiable at any point of } [0,1] \right\}</math> is dense in <math>C([0,1])</math> and contains a G<sub>δ</sub> subset of the metric space <math>C([0,1])</math><ref name="Negrepontis 1997">{{cite book|last1=Νεγρεπόντης|first1=Σ.|last2=Ζαχαριάδης|first2=Θ.|last3=Καλαμίδας|first3=Ν.|last4=Φαρμάκη|first4=Β.|title=Γενική Τοπολογία και Συναρτησιακη Ανάλυσγη|year=1997|publisher=Εκδόσεις Συμμετρία|location=Αθήνα, Ελλάδα|isbn=960-266-178-Χ|pages=55–64|url=http://www.simmetria.gr/eshop/?149,%CD%C5%C3%D1%C5%D0%CF%CD%D4%C7%D3-%D3.-%C6%C1%D7%C1%D1%C9%C1%C4%C7%D3-%C8.-%CA%C1%CB%C1%CC%C9%C4%C1%D3-%CD.-%D6%C1%D1%CC%C1%CA%C7-%C2.-%C3%E5%ED%E9%EA%DE-%D4%EF%F0%EF%EB%EF%E3%DF%E1-%EA%E1%E9-%D3%F5%ED%E1%F1%F4%E7%F3%E9%E1%EA%DE-%C1%ED%DC%EB%F5%F3%E7|accessdate=3 April 2011|language=Greek|chapter=2, Πλήρεις Μετρικοί Χώροι}}</ref> | ||
==Properties== | |||
The | The notion of G<sub>δ</sub> sets in [[Metric space|metric]] (and [[Topological space|topological]]) spaces is strongly related to the notion of [[Complete metric space|completeness]] of the metric space as well as to the [[Baire category theorem]]. This is described by the [[Mazurkiewicz]] theorem: | ||
: <math> \ | '''Theorem''' ([[Mazurkiewicz]]): Let <math>(\mathcal{X},\rho)</math> be a complete metric space and <math>A\subset\mathcal{X}</math>. Then the following are equivalent: | ||
# <math>A</math> is a G<sub>δ</sub> subset of <math>\mathcal{X}</math> | |||
# There is a [[Metric (mathematics)|metric]] <math>\sigma</math> on <math>A</math> which is [[Metric_(mathematics)#Equivalence_of_metrics|equivalent]] to <math>\rho | A</math> such that <math>(A,\sigma)</math> is a complete metric space. | |||
A key property of <math>G_\delta</math> sets is that they are the possible sets at which a function from a topological space to a metric space is [[continuous function|continuous]]. Formally: The set of points where a function <math>f</math> is continuous is a <math>G_\delta</math> set. This is because continuity at a point <math>p</math> can be defined by a <math>\Pi^0_2</math> formula, namely: For all positive integers <math>n</math>, there is an open set <math>U</math> containing <math>p</math> such that <math>d(f(x),f(y)) < 1/n</math> for all <math>x, y</math> in <math>U</math>. If a value of <math>n</math> is fixed, the set of <math>p</math> for which there is such a corresponding open <math>U</math> is itself an open set (being a union of open sets), and the [[universal quantifier]] on <math>n</math> corresponds to the (countable) intersection of these sets. In the real line, the converse holds as well; for any G<sub>δ</sub> subset ''A'' of the real line, there is a function ''f'': '''R''' → '''R''' which is continuous exactly at the points in ''A''. As a consequence, while it is possible for the irrationals to be the set of continuity points of a function (see the [[popcorn function]]), it is impossible to construct a function which is continuous only on the rational numbers. | |||
===Basic properties=== | |||
* The [[complement (set theory)|complement]] of a G<sub>δ</sub> set is an [[Fσ set|F<sub>σ</sub>]] set. | |||
* The intersection of countably many G<sub>δ</sub> sets is a G<sub>δ</sub> set, and the union of ''finitely'' many G<sub>δ</sub> sets is a G<sub>δ</sub> set; a countable union of G<sub>δ</sub> sets is called a G<sub>δσ</sub> set. | |||
* In [[metrizable]] spaces, every [[closed set]] is a G<sub>δ</sub> set and, dually, every open set is an F<sub>σ</sub> set. | |||
* A [[topological subspace|subspace]] ''A'' of a [[topologically complete]] space ''X'' is itself topologically complete if and only if ''A'' is a G<sub>δ</sub> set in ''X''. | |||
* A set that contains the intersection of a countable collection of [[dense set|dense]] open sets is called '''[[comeagre set|comeagre]]''' or '''residual.''' These sets are used to define [[generic property|generic properties]] of topological spaces of functions. | |||
The [[ | The following results regard [[Polish space]]s<ref name="Fremlin 2003">{{cite book|last=Fremlin|first=D.H.|title=Measure Theory, Volume 4|year=2003|publisher=Digital Books Logistics|location=Petersburg, England|isbn=0-9538129-4-4|pages=334–335|url=http://www.essex.ac.uk/maths/people/fremlin/mt.htm|accessdate=1 April 2011|chapter=4, General Topology}}</ref>: | ||
* Let <math>(\mathcal{X},\mathcal{T})</math> be a [[Polish space|Polish topological space]] and let <math>G\subset\mathcal{X}</math> be a G<sub>δ</sub> set (with respect to <math>\mathcal{T}</math>). The <math>G</math> is a Polish space with respect to the [[subspace topology]] on it. | |||
* Topological characterization of Polish spaces: If <math>\mathcal{X}</math> is a [[Polish space]] then it is [[Homeomorphism|homeomorphic]] to a G<sub>δ</sub> subset of a [[Compact space|compact]] [[metric space]]. | |||
==G<sub>δ</sub> space== | |||
A [[Gδ space|'''G<sub>δ</sub> space''']] is a topological space in which every [[closed set]] is a G<sub>δ</sub> set ([http://www.jstor.org/stable/2317335 Johnson, 1970]).{{Citation needed|date=August 2008}} A [[normal space]] which is also a G<sub>δ</sub> space is '''[[perfectly normal space|perfectly normal]]'''. Every metrizable space is perfectly normal, and every perfectly normal space is [[completely normal]]: neither implication is reversible. | |||
==See also== | |||
* [[Fσ set|F<sub>σ</sub> set]], the [[duality (mathematics)|dual]] concept; note that "G" is German (''[[wikt:Gebiet#German|Gebiet]]'') and "F" is French (''[[wikt:fermé#French|fermé]]''). | |||
==References== | |||
* [[John L. Kelley]], ''General topology'', [[Van Nostrand Reinhold|van Nostrand]], 1955. P.134. | |||
* {{Cite book | last1=Steen | first1=Lynn Arthur | author1-link=Lynn Arthur Steen | last2=Seebach | first2=J. Arthur Jr. | author2-link=J. Arthur Seebach, Jr. | title=[[Counterexamples in Topology]] | origyear=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=[[Dover Publications|Dover]] reprint of 1978 | isbn=978-0-486-68735-3 | mr=507446 | year=1995 | postscript=<!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}}}} P. 162. | |||
* {{Cite book | last=Fremlin | first=D.H. | title=Measure Theory, Volume 4 | origyear=2003 | publisher=Digital Books Logostics | location=Petersburg, England | isbn=0-9538129-4-4 | year=2003 | url=http://www.essex.ac.uk/maths/people/fremlin/mt.htm|accessdate=1 April 2011|chapter=4, General Topology | postscript=<!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}}}} P. 334. | |||
* Roy A. Johnson (1970). "A Compact Non-Metrizable Space Such That Every Closed Subset is a G-Delta". ''The American Mathematical Monthly'', Vol. 77, No. 2, pp. 172–176. [http://www.jstor.org/stable/2317335 on JStor] | |||
== | |||
==Notes== | ==Notes== | ||
<references /> | |||
{{DEFAULTSORT:Gδ Set}} | |||
[[Category:General topology]] | |||
[[Category:Descriptive set theory]] | |||
[[ | [[ja:Gδ集合]] | ||
[[ | [[pl:Zbiór typu G-delta]] |
Revision as of 01:53, 11 August 2014
In the mathematical field of topology, a Gδ set is a subset of a topological space that is a countable intersection of open sets. The notation originated in Germany with G for Gebiet (German: area, or neighborhood) meaning open set in this case and δ for Durchschnitt (German: intersection). The term inner limiting set is also used. Gδ sets, and their dual Fσ sets, are the second level of the Borel hierarchy.
Definition
In a topological space a Gδ set is a countable intersection of open sets. The Gδ sets are exactly the level sets of the Borel hierarchy.
Examples
- Any open set is trivially a Gδ set
- The irrational numbers are a Gδ set in R, the real numbers, as they can be written as the intersection over all rational numbers q of the complement of {q} in R. Note that the set of rational numbers is not a Gδ set in R.
- The rational numbers Q are not a Gδ set. If we were able to write Q as the intersection of open sets An, each An would have to be dense in R since Q is dense in R. However, the construction above gave the irrational numbers as a countable intersection of open dense subsets. Taking the intersection of both of these sets gives the empty set as a countable intersection of open dense sets in R, a violation of the Baire category theorem.
- The zero-set of a derivative of an everywhere differentiable real-valued function on R is a Gδ set; it can be a dense set with empty interior, as shown by Pompeiu's construction.
A more elaborate example of a Gδ set is given by the following theorem:
Theorem: The set is dense in and contains a Gδ subset of the metric space [1]
Properties
The notion of Gδ sets in metric (and topological) spaces is strongly related to the notion of completeness of the metric space as well as to the Baire category theorem. This is described by the Mazurkiewicz theorem:
Theorem (Mazurkiewicz): Let be a complete metric space and . Then the following are equivalent:
- is a Gδ subset of
- There is a metric on which is equivalent to such that is a complete metric space.
A key property of sets is that they are the possible sets at which a function from a topological space to a metric space is continuous. Formally: The set of points where a function is continuous is a set. This is because continuity at a point can be defined by a formula, namely: For all positive integers , there is an open set containing such that for all in . If a value of is fixed, the set of for which there is such a corresponding open is itself an open set (being a union of open sets), and the universal quantifier on corresponds to the (countable) intersection of these sets. In the real line, the converse holds as well; for any Gδ subset A of the real line, there is a function f: R → R which is continuous exactly at the points in A. As a consequence, while it is possible for the irrationals to be the set of continuity points of a function (see the popcorn function), it is impossible to construct a function which is continuous only on the rational numbers.
Basic properties
- The complement of a Gδ set is an Fσ set.
- The intersection of countably many Gδ sets is a Gδ set, and the union of finitely many Gδ sets is a Gδ set; a countable union of Gδ sets is called a Gδσ set.
- In metrizable spaces, every closed set is a Gδ set and, dually, every open set is an Fσ set.
- A subspace A of a topologically complete space X is itself topologically complete if and only if A is a Gδ set in X.
- A set that contains the intersection of a countable collection of dense open sets is called comeagre or residual. These sets are used to define generic properties of topological spaces of functions.
The following results regard Polish spaces[2]:
- Let be a Polish topological space and let be a Gδ set (with respect to ). The is a Polish space with respect to the subspace topology on it.
- Topological characterization of Polish spaces: If is a Polish space then it is homeomorphic to a Gδ subset of a compact metric space.
Gδ space
A Gδ space is a topological space in which every closed set is a Gδ set (Johnson, 1970).Potter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park. A normal space which is also a Gδ space is perfectly normal. Every metrizable space is perfectly normal, and every perfectly normal space is completely normal: neither implication is reversible.
See also
References
- John L. Kelley, General topology, van Nostrand, 1955. P.134.
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 P. 162. - 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 P. 334. - Roy A. Johnson (1970). "A Compact Non-Metrizable Space Such That Every Closed Subset is a G-Delta". The American Mathematical Monthly, Vol. 77, No. 2, pp. 172–176. on JStor
Notes
- ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534