Intertemporal portfolio choice

From formulasearchengine
Revision as of 15:00, 8 November 2013 by en>Duoduoduo (Age effects: labor supply effect)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties.[1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and cosines etc. of matrices),[2] and the eigenvalues of matrices (eigendecomposition of a matrix, eigenvalue perturbation theory).

Matrix spaces

The set of all m×n matrices over a number field F denoted in this article Mmn(F) form a vector space. Examples of F include the set of integers ℤ, the real numbers ℝ, and set of complex numbers ℂ. The spaces Mmn(F) and Mpq(F) are different spaces if m and p are unequal, and if n and q are unequal; for instance M32(F) ≠ M23(F). Two m×n matrices A and B in Mmn(F) can be added together to form another matrix in the space Mmn(F):

A,BMmn(F),A+BMmn(F)

and multiplied by a α in F, to obtain another matrix in Mmn(F):

αF,αAMmn(F)

Combining these two properties, a linear combination of matrices A and B are in Mmn(F) is another matrix in Mmn(F):

αA+βBMmn(F)

where α and β are numbers in F.

Any matrix can be expressed as a linear combination of basis matrices, which play the role of the basis vectors for the matrix space. For example, for the set of 2×2 matrices over the field of real numbers, M22(ℝ), one legitimate basis set of matrices is:

(1000),(0100),(0010),(0001),

because any 2×2 matrix can be expressed as:

(abcd)=a(1000)+b(0100)+c(0010)+d(0001),

where a, b, c,d are all real numbers. This idea applies to other fields and matrices of higher dimensions.

Determinants

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

The determinant of a square matrix is an important property. The determinant indicates if a matrix is invertible (i.e. the inverse of a matrix exists). Determinants are used for finding eigenvalues of matrices (see below), and for solving a system of linear equations (see Cramer's rule).

Eigenvalues and eigenvectors of matrices

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Definitions

An n×n matrix A has eigenvectors x and eigenvalues λ defined by the relation:

Ax=λx

In words, the matrix multiplication of A followed by an eigenvector x (here an n-dimensional column matrix), is the same as multiplying the eigenvector by the eigenvalue. For an n×n matrix, there are n eigenvalues. The eigenvalues are the roots of the characteristic polynomial:

pA(λ)=det(AλI)=0

where I is the n×n identity matrix.

Roots of polynomials, in this context the eigenvalues, can all be different, or some may be equal (in which case eigenvalue has multiplicity, the number of times an eigenvalue occurs). After solving for the eigenvalues, the eigenvectors corresponding to the eigenvalues can be found by the defining equation.

Perturbations of eigenvalues

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Matrix similarity

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Two n×n matrices A and B are similar if they are related by a similarity transformation:

B=PAP1

The matrix P is called a similarity matrix, and is necessarily invertible.

Unitary similarity

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Canonical forms

I'm Fernando (21) from Seltjarnarnes, Iceland.
I'm learning Norwegian literature at a local college and I'm just about to graduate.
I have a part time job in a the office.

my site; wellness [continue reading this..]

Row echelon form

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Jordan normal form

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Weyr canonical form

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Frobenius normal form

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Triangular factorization

LU decomposition

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

LU decomposition splits a matrix into a matrix product of an upper triangular matrix and a lower triangle matrix.

Matrix norms

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Since matrices form vector spaces, one can form axioms (analogous to those of vectors) to define a "size" of a particular matrix. The norm of a matrix is a positive real number.

Definition and axioms

For all matrices A and B in Mmn(F), and all numbers α in F, a matrix norm, delimited by double vertical bars || ... ||, fulfills:[note 1]

A0
with equality only for A = 0, the zero matrix.
αA=|α|A
A+BA+B

Frobenius norm

The Frobenius norm is analogous to the dot product of Euclidean vectors; multiply matrix elements entry-wise, add up the results, then take the positive square root:

A=A:A=i=1mj=1n(Aij)2

It is defined for matrices of any dimension (i.e. no restriction to square matrices).

Positive definite and semidefinite matrices

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Functions

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Matrix elements are not restricted to constant numbers, they can be mathematical variables.

Functions of matrices

A functions of a matrix takes in a matrix, and return something else (a number, vector, matrix, etc...).

Matrix-valued functions

A matrix valued function takes in something (a number, vector, matrix, etc...) and returns a matrix.

See also

Other branches of analysis

Other concepts of linear algebra

Types of matrix

Matrix functions

Footnotes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

References

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Further reading

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  2. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534


Cite error: <ref> tags exist for a group named "note", but no corresponding <references group="note"/> tag was found