Associated prime

From formulasearchengine
Jump to navigation Jump to search

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a submodule of M. The set of associated primes is usually denoted by .

In commutative algebra, associated primes are linked to the Lasker-Noether primary decomposition of ideals in commutative Noetherian rings. Specifically, if an ideal J is decomposed as a finite intersection of primary ideals, the radicals of these primary ideals are prime ideals, and this set of prime ideals coincides with .Template:Sfn Also linked with the concept of "associated primes" of the ideal are the notions of isolated primes and embedded primes.


A nonzero R module N is called a prime module if the annihilator for any nonzero submodule N' of N. For a prime module N, is a prime ideal in R.Template:Sfn

An associated prime of an R module M is an ideal of the form where N is a prime submodule of M. In commutative algebra the usual definition is different, but equivalent:Template:Sfn if R is commutative, an associated prime P of M is a prime ideal of the form for a nonzero element m of M or equivalently is isomorphic to a submodule of M.

In a commutative ring R, minimal elements in (with respect to the set-theoretic inclusion) are called isolated primes while the rest of the associated primes (i.e., those properly containing associated primes) are called embedded prime.

A module is called coprimary if xm = 0 for some nonzero m ∈ M implies xnM = 0 for some positive integer n. A nonzero finitely generated module M over a commutative Noetherian ring is coprimary if and only if it has exactly one associated prime. A submodule N of M is called P-primary if is coprimary with P. An ideal I is a P-primary ideal if and only if ; thus, the notion is a generalization of a primary ideal.


Most of these properties and assertions are given in Template:Harv starting on page 86.

The following properties all refer to a commutative Noetherian ring R:

such that each quotient Mi/Mi−1 is isomorphic to R/Pi for some prime ideals Pi. Moreover every associated prime of M occurs among the set of primes Pi. (In general not all the ideals Pi are associated primes of M.)

{{#invoke:Category handler|main}}{{#invoke:Category handler|main}}[citation needed] }}


  • If R is the ring of integers, then non-trivial free abelian groups and non-trivial abelian groups of prime power order are coprimary.
  • If R is the ring of integers and M a finite abelian group, then the associated primes of M are exactly the primes dividing the order of M.
  • The group of order 2 is a quotient of the integers Z (considered as a free module over itself), but its associated prime ideal (2) is not an associated prime of Z.


  • {{#invoke:citation/CS1|citation

|CitationClass=citation }}

  • {{#invoke:citation/CS1|citation

|CitationClass=citation }}

  • {{#invoke:citation/CS1|citation

|CitationClass=citation }}