Necklace polynomial: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Headbomb
m References: Various citation cleanup (identifiers mostly), replaced: | url=http://dx.doi.org/10.1016/0001-8708 → | doi=10.1016/0001-8708, | id={{JFM|04.0086.01}} → | jfm=04.0086.01, | id={{MR|723197}} → | mr=72319 using AWB
 
m mathrev
Line 1: Line 1:
== Mbt Sandaler Udsalg vad som helst. ==
  {{about|covariant derivatives|directional tensor derivatives with respect to continuum mechanics|Tensor derivative (continuum mechanics)}}


Vi hade rum 405. Men det har ett pris. Du minns i juni 2009 som han påstod sig ha vandring Appalachian Trail när han lämnade guvernören kontor för ett par dagar, försvann.. Detta sätt de känns som de är att vara till hjälp, men istället gör precis dem känna att [http://www.missionshuset.com/forum_fotoklubben/kalender.asp?m=31-Mbt-Sandaler-Udsalg Mbt Sandaler Udsalg] de gör det rätta.. <br><br>Jag tycker faktiskt ordet "sexig" att ha en mycket ytlig klang.. Men hans försvar i ytterfälten var ett problem på flera punkter under loppet av spelet. Det är lätt att uppskatta den sträcka av frihet med tanke på dess sällsynthet, men historien behöver inte ha försmäktat så drastiskt ... <br><br>Namnen förändras, men detta är en del av ett välbekant företag story. På en annan front, eftersom den kanadensiska rådet för flyktingar rapporterade nyligen, sedan 2011 CBSA har varit finjustering en hemsida som heter att CBSA. Jag lämnade känsla missnöjd. [http://www.konstik.se/Modules/Application/Global.asp?n=38 Nike Air Force 1 Mid Dam] <br><br>Lessore 1st färgade om keramik i Laurin tillverkningsanläggning i Bourg la Reine, i närheten av Paris, Frankrike, och han efteråt visade hjälp från Svres avseende 6 många år och med 1852. Nu, hon och jag har sorts upp med saker, jag gav ut den här stora ursäkt, men jag vet att hon inte [http://www.missionshuset.com/forum_fotoklubben/kalender.asp?m=58-Mbt-Huddinge Mbt Huddinge] litar på mig och i sanning jag don klandra henne. <br><br>Börsintroduktionen fick anbud för över tre crore aktier (2,02 gånger) mot 1,49 crore aktier som erbjuds för allmänheten, senaste uppgifterna med National Stock Exchange visar. Vi använde främst den senaste Apple TV för att prova den amerikanska Netflix tjänsten i Kanada. <br><br>Warg uteblev i det inledande överklagande utfrågning i 2010, presenterar ett läkarintyg som sa att han var begränsad till ett sjukhus i Kambodja, Torrentfreak anteckningar. Stämningen sade alternativen genererade mer än USD 1,7 miljoner i orealiserad vinst före ketchup maker på torsdagen överens om att en 23 miljarder dollar utköp av Warren Buffett Berkshire Hathaway och riskkapitalbolaget 3G Capital Partners. <br><br>Gud vet hur många gånger i veckan. Sätt b mjölk och grädde på burk och försiktigt rör om med hjälp av en [http://www.stuteri-midgard.se/feed/bookflip.asp?timberland=9 Timberland Boots Herr] metall (rostfri) sked. Du måste stanna under hålet och har några verkliga precisa skott. Vi använder massor av färsk vitlök, peppar och lite cayenne för krydda, eller en citronpeppar eller Mrs Dash, vad som helst. <br><br>Han gynnades av Kings 'stänga försvar, eftersom de besökare från Long Island kunde bara uppbåda 16 skott på night.Analysis: The Kings nu har en underbar problem, i det att de har tydligen två utmärkta backup målvakter i Martin Jones och Ben Scrivens. <br><br>Finansiell stabilitet för arbetstagare består av 401 (k) pensionsplaner, program anställd bistånd, flexibla utgifter konton, och betald ledighet. "Tack för att du tar mindre än 48 timmar för att bevisa min poäng. Innehåller listor för Canadian Tire Pengar, Bank of Canada, Dominion of Canada, etc.Shareware 14.925 k 334 libertystreet com StampManage CanadaUse StampManage Kanada Philatelic Software att katalogisera och värde din kanadensiska frimärkssamling.<ul>
In [[mathematics]], the '''covariant derivative''' is a way of specifying a [[derivative]] along [[tangent vector]]s of a [[manifold]]. Alternatively, the covariant derivative is a way of introducing and working with a [[connection (mathematics)|connection]] on a manifold by means of a [[differential operator]], to be contrasted with the approach given by a [[connection (principal bundle)|principal connection]] on the frame bundle – see [[affine connection]]. In the special case of a manifold isometrically embedded into a higher dimensional [[Euclidean space]], the covariant derivative can be viewed as the [[orthogonal projection]] of the Euclidean derivative along a tangent vector onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.
 
  <li>[http://www.bbctop.com/news/html/?2877772.html http://www.bbctop.com/news/html/?2877772.html]</li>
 
  <li>[http://enseignement-lsf.com/spip.php?article64#forum18005355 http://enseignement-lsf.com/spip.php?article64#forum18005355]</li>
 
  <li>[http://www.happyshopping.co/index.php?page=item&id=1853483 http://www.happyshopping.co/index.php?page=item&id=1853483]</li>
 
  <li>[http://audeladeleau.free.fr/spip.php?article11/ http://audeladeleau.free.fr/spip.php?article11/]</li>
 
  <li>[http://bbs.anjian.com/home.php?mod=spacecp&ac=blog&blogid= http://bbs.anjian.com/home.php?mod=spacecp&ac=blog&blogid=]</li>
 
</ul>


== Canada Goose Jacka Stockholm Nåväl ==
This article presents an introduction to the covariant derivative of a [[vector field]] with respect to a vector field, both in a coordinate free language and using a local [[coordinate system]] and the traditional index notation. The covariant derivative of a [[tensor field]] is presented as an extension of the same concept. The covariant derivative generalizes straightforwardly to a notion of differentiation associated to a [[connection on a vector bundle]], also known as a '''Koszul connection'''.


De förorenade vattendrag som dumpar gödsel i vattnet supply.Even kyrkogården som försvann som en uppenbarelse i en cornfield.It var inte tänkt att vara det way.With Iowa politiska förberedande valmöte vid horisonten [http://www.riverrafter.se/forum/andring.asp?g=13 Canada Goose Jacka Stockholm] 2007, gjorde presidentkandidaten Barack Obama hemodlade majs en mittpunkten i hans plan för att bromsa den globala uppvärmningen. <br><br>Jag har en speciell familj resa till NYC planerad till nästa vecka. Skär varje grillade hela vete pitabröd i 8 till och med paj formade chips. Det är en riktigt hemsk känsla och ja, det är precis vad som hände. Skicka inte ställa frågor under ditt riktiga namn som du planerar att anonymisera senare. <br><br>Kött håller mycket bra om insvept ordentligt. Brottsbekämpning i solskenet staten har slagit tillbaka hårt. Blandningen kommer att bubbla upp ganska mycket. Jag tror att du kommer också .. [http://www.konstik.se/Modules/Application/Global.asp?n=45 Nike Air Max 2013 Pink] Men jag lever stiger över dessa [http://www.sandins.info/ferragamo/HRMu/Rrvja/historik.asp?g=186-Canada-Goose-Chateau-Parka-Herr Canada Goose Chateau Parka Herr] grundläggande frågor för att erbjuda en fängslande upplevelse som är svår att glömma. <br><br>Site 69 i Bruin var bara OK. Denna plats rocks. Jag tycker det är rättvist att säga att den södra var en mer talangfulla team, vilket gör att Nord seger ännu mer imponerande. Jag mötte Shri J. Om ditt företag har en webbplats eller mobil app, använder den webbanalys och förmodligen har engagerat flera leverantörer för att samla in och analysera användarinformation. <br><br>Nåväl, låt oss se vad detta Leadership Institute sak är. Bolaget planerar att komma ut med en offentlig emission av upp till 1,88,00,000 aktier av Rs 10 vardera för kontanter till ett pris som fastställs senare genom en 100 procent bokbyggnad fråga. <br><br>Forskare trodde West Point (en stad fastställdes vid sammanflödet av Pamunkey River och Mattaponi Floder vid rinner av floden York) tycktes möta [http://www.thunderdust.se/tecknat/fredde/images/birma.asp?id=7-Longchamp-Väskor-Priser Longchamp Väskor Priser] en beskrivning i skrifter av John Smith.Powhatan 's ChimneyTraditionally, folk trodde att Werowocomoco var belägen nära Powhatan lampglas i området Timberneck Bay, något uppströms på York River från Gloucester Point. <br><br>Denna okonventionella kontrollschema gör ett fantastiskt jobb med att jorda dig till karaktärerna och deras känslotillstånd. Dock måste du se sådana sekvenser så ofta att du kommer att växa uttråkad till döds av dem mycket snart, men du måste använda dem om och om i alla fall. <br><br>Mitt problem är att jag har aldrig kunnat växa mina naglar ut oavsett vad. Jag vet inte riktigt bära smink. Val. Jag är rädd att min vanliga kör rutin på mycket hårda ytor långsamt dödar min kropp. Många av dem börjar arbeta här i tidig ålder, eftersom ungdomar hämtar ett högt pris bland klientelet.<ul>
==Introduction and history==
 
Historically, at the turn of the 20th century, the covariant derivative was introduced by [[Gregorio Ricci-Curbastro]] and [[Tullio Levi-Civita]]<ref>Levi-Civita, T. and Ricci, G. "Méthodes de calcul différential absolu et leurs applications", ''Math. Ann. B'', '''54''' (1900) 125–201.</ref> in the theory of [[Riemannian geometry|Riemannian]] and [[pseudo-Riemannian manifold|pseudo-Riemannian geometry]]. Ricci and Levi-Civita (following ideas of [[Elwin Bruno Christoffel]]) observed that the [[Christoffel symbols]] used to define the [[Riemann tensor|curvature]]<ref>[[Riemann]], G.F.B., "Über die Hypothesen, welche der Geomtrie zu Grunde liegen", ''Gesammelte Mathematische Werke'' (1866); reprint, ed. Weber, H.: Dover, New York, 1953.</ref><ref>Christoffel, E.B., "Über die Transformation der homogenen Differentialausdrücke zweiten Grades," ''J. für die Reine und Angew. Math.'' '''70''' (1869), 46–70.</ref> could also provide a notion of [[derivative|differentiation]] which generalized the classical [[directional derivative]] of [[vector fields]] on a manifold. This new derivative – the [[Levi-Civita connection]] – was ''[[Covariance and contravariance of vectors|covariant]]'' in the sense that it satisfied Riemann's requirement that objects in geometry should be independent of their description in a particular coordinate system.
  <li>[http://khadakpada.com/index.php?page=item&id=384806 http://khadakpada.com/index.php?page=item&id=384806]</li>
 
  <li>[http://huanxun9999.com/news/html/?65929.html http://huanxun9999.com/news/html/?65929.html]</li>
 
  <li>[http://verdamilio.net/tonio/spip.php?article1536/ http://verdamilio.net/tonio/spip.php?article1536/]</li>
 
  <li>[http://passerelle.ethiopie.free.fr/spip.php?article81/ http://passerelle.ethiopie.free.fr/spip.php?article81/]</li>
 
  <li>[http://111.11.181.205:8082/news/html/?51265.html http://111.11.181.205:8082/news/html/?51265.html]</li>
 
</ul>


== Polo Ralph Lauren Sverige Glasögon med en $ 3000 deposition ==
It was soon noted by other mathematicians, prominent among these being [[Hermann Weyl]], [[Jan Arnoldus Schouten]], and [[Élie Cartan]],<ref>cf. with Cartan, E. [http://www.numdam.org/item?id=ASENS_1923_3_40__325_0 "Sur les variétés à connexion affine et la theorie de la relativité généralisée"], ''Annales, Ecole Normale'' '''40''' (1923), 325–412.</ref> that a covariant derivative could be defined abstractly without the presence of a [[metric tensor|metric]]. The crucial feature was not a particular dependence on the metric, but that the Christoffel symbols satisfied a certain precise second order transformation law. This transformation law could serve as a starting point for defining the derivative in a covariant manner. Thus the theory of covariant differentiation forked off from the strictly Riemannian context to include a wider range of possible geometries.


Om du inte kan vänta med att få tag på en MOVI, kanske du vill hålla ett öga på Freefly hemsida. I M10 är inställd på att vara tillgänglig för pre order (med en $ [http://www.mountainofpower.com/includes/mission.asp?polo=25 Polo Ralph Lauren Sverige Glasögon] 3000 deposition) någon gång den här veckan. Företaget räknar med att börja levereras i 3: e kvartalet 2013.<br><br>När när du använder Twitter Adder rabatten, befinner du dig att ge ditt företag ska kunna anställa Myspace för att få felfri främja. Som bär en Twitter datum Adder kampanjkod 25% är ofta en rimlig mängd du skulle vara beredd att rädda. Bara en kampanjkod om 20% från kan hjälpa, liksom en kampanjkod om 20% från varandra ger betydande personliga besparingar. 25% ner är vägen ännu bättre, även om. <br><br>Jag var en gång en massiv Kay fan, jag har sett honom sedan 1997, som gjorde mig mycket upprörd när jag gick för att se honom på "min mamma vill ha en bungalow" turné. Precis som på DVD så ser du att det är samma skämt från de utställningar han spelade i 97, är van vid en ny publik. Jag skulle inte ha inriktade om det var en eller två men hela uppsättningen återvanns. Eftersom jag har sett många TV-intervjuer, utdrag ur televsion och frisläppandet av mer merchandise, och fann att de också åter frågor av gammalt material. Det upprör mig att se honom slå en sådan uppmärksamhet utan att [http://www.mogawens.com/includes/css/default.asp?newbalance=4 New Balance 574 Sonic] faktiskt vara värd det, när sådana komiker som Adam Hills är över såg. <br><br>Låt mig förklara vad en certifierad Preowned golfklubb är och varför jag har tagit med dem i denna artikel. Certifierade Preowned Golfklubbor har tidigare spelat, men är i bra skick. Det perfekta objektet för spelare som söker en Taylormade golfklubba, men uppskattar att spara pengar. För en golfklubba för att bli de måste gå igenom en rigorös process. <br><br>Barone nämner också bygga tankeledarskap och varumärkeskännedom, samt [http://www.schwedensplitt.com/image/film_tekst/baggr_tekst.asp?u=223-Återförsäljare-Ugg-Australia Återförsäljare Ugg Australia] skapa webbseminarier och hålla virtuella möten. Samtliga av dessa är relaterade som en småföretagare, är du tvungen att göra en hel del arbete själv, och som sådan har mycket kunskap kapital i din bransch. Genom att skapa webbseminarier kan du faktiskt arbetar för att bygga upp den tanken ledarskap och varumärkeskännedom. Det är också viktigt att konsumera andra presentationer. Det spelar ingen roll om du är ute efter något nytt, [http://www.thunderdust.se/tecknat/fredde/images/birma.asp?id=27-Longchamp-Le-Pliage-Priser Longchamp Le Pliage Priser] att försöka lära sig något om din bransch, eller helt enkelt försöka lära sig att göra något bättre, det finns många presentationer som kan hjälpa. Så precis som det är viktigt att publicera och dela ditt eget innehåll, är det lika viktigt att vara en konsument av annat innehåll som finns där ute. Du vet aldrig vad du kan lära dig!<ul>
In the 1940s, practitioners of [[differential geometry]] began introducing other notions of covariant differentiation in general [[vector bundle]]s which were, in contrast to the classical bundles of interest to geometers, not part of the [[tensor analysis]] of the manifold. By and large, these generalized covariant derivatives had to be specified ''ad hoc'' by some version of the connection concept. In 1950, [[Jean-Louis Koszul]] unified these new ideas of covariant differentiation in a vector bundle by means of what is known today as a '''[[connection (vector bundle)|Koszul connection]]''' <ref>Koszul, J. L. "Homologie et cohomologie des algebres de Lie", ''Bulletin de la Société Mathématique'' '''78''' (1950) 65–127.</ref> or a '''connection on a vector bundle'''. Using ideas from [[Lie algebra cohomology]], Koszul successfully converted many of the analytic features of covariant differentiation into algebraic ones. In particular, Koszul connections eliminated the need for awkward manipulations of [[Christoffel symbols]] (and other analogous non-[[tensor]]ial) objects in differential geometry. Thus they quickly supplanted the classical notion of covariant derivative in many post-1950 treatments of the subject.
 
 
  <li>[http://www.frel.univ-paris-diderot.fr/spip.php?article1 http://www.frel.univ-paris-diderot.fr/spip.php?article1]</li>
==Motivation==
 
The '''covariant derivative''' is a generalization of the [[directional derivative]] from [[vector calculus]]. As with the directional derivative, the covariant derivative is a rule, <math>\nabla_{\bold u}{\bold v}</math>, which takes as its inputs: (1) a vector, '''u''', defined at a point ''P'', and (2) a [[vector field]], '''v''', defined in a neighborhood of ''P''.<ref>The covariant derivative is also denoted variously by '''<math>\partial</math><sub>v</sub>u''', '''D<sub>v</sub>u''', or other notations.</ref> The output is the vector <math>\nabla_{\bold u}{\bold v}(P)</math>, also at the point ''P''. The primary difference from the usual directional derivative is that <math>\nabla_{\bold u}{\bold v}</math> must, in a certain precise sense, be ''independent'' of the manner in which it is expressed in a [[coordinate system]].
  <li>[http://www.pierre-le-jeune.info/spip.php?article3 http://www.pierre-le-jeune.info/spip.php?article3]</li>
 
 
A vector may be ''described'' as a list of numbers in terms of a [[basis (mathematics)|basis]], but as a geometrical object a vector retains its own identity regardless of how one chooses to describe it in a basis. This persistence of identity is reflected in the fact that when a vector is written in one basis, and then the basis is changed, the vector transforms according to a [[change of basis]] formula. Such a transformation law is known as a [[covariant transformation]]. The covariant derivative is required to transform, under a change in coordinates, in the same way as a vector does: the covariant derivative must change by a covariant transformation (hence the name).
  <li>[http://web.zaiwww.com/news/html/?190980.html http://web.zaiwww.com/news/html/?190980.html]</li>
 
 
In the case of [[Euclidean space]], one tends to define the derivative of a vector field in terms of the difference between two vectors at two nearby points.
  <li>[http://cerisier.info/spip.php?article20/ http://cerisier.info/spip.php?article20/]</li>
In such a system one [[Translation (geometry)|translates]] one of the vectors to the origin of the other, keeping it parallel. With a Cartesian (fixed [[orthonormal]]) coordinate system we thus obtain the simplest example: covariant derivative which is obtained by taking the derivative of the components.
 
 
  <li>[http://www.21fengmi.com/forum.php?mod=viewthread&tid=377527&fromuid=11891 http://www.21fengmi.com/forum.php?mod=viewthread&tid=377527&fromuid=11891]</li>
In the general case, however, one must take into account the change of the coordinate system. For example, if the same covariant derivative is written in [[coordinates (elementary mathematics)|polar coordinates]] in a two dimensional Euclidean plane, then it contains extra terms that describe how the coordinate grid itself "rotates". In other cases the extra terms describe how the coordinate grid expands, contracts, twists, interweaves, etc.
 
 
</ul>
Consider the example of moving along a curve γ(''t'') in the Euclidean plane. In polar coordinates, γ may be written in terms of its radial and angular coordinates by γ(''t'') = (''r''(''t''), θ(''t'')). A vector at a particular time ''t''<ref>In many applications, it may be better not to think of ''t'' as corresponding to time, at least for applications in [[general relativity]]. It is simply regarded as an abstract parameter varying smoothly and monotonically along the path.</ref> (for instance, the acceleration of the curve) is expressed in terms of <math>({\mathbf e}_r, {\mathbf e}_{\theta})</math>, where <math>{\mathbf e}_r</math> and <math>{\mathbf e}_{\theta}</math> are unit tangent vectors for the polar coordinates, serving as a basis to decompose a vector in terms of radial and [[tangential component]]s. At a slightly later time, the new basis in polar coordinates appears slightly rotated with respect to the first set. The covariant derivative of the basis vectors (the [[Christoffel symbols]]) serve to express this change.
{{Clear}}
 
In a curved space, such as the surface of the Earth (regarded as a sphere), the [[Translation (geometry)|translation]] is not well defined and its analog, [[parallel transport]], depends on the path along which the vector is translated.
 
A vector '''e''' on a globe on the equator in Q is directed to the north. Suppose we [[parallel transport]] the vector first along the equator until P and then (keeping it parallel to itself) drag it along a meridian to the pole N and (keeping the direction there) subsequently transport it along another meridian back to Q. Then we notice that the parallel-transported vector along a closed circuit does not return as the same vector; instead, it has another orientation. This would not happen in Euclidean space and is caused by the ''curvature'' of the surface of the globe. The same effect can be noticed if we drag the vector along an infinitesimally small closed surface subsequently along two directions and then back. The infinitesimal change of the vector is a measure of the curvature.
{{Clear}}
 
===Remarks===
* The definition of the covariant derivative does not use the metric in space. However, for each metric there is a unique [[Torsion tensor|torsion]]-free covariant derivative called the [[Levi-Civita connection]] such that the covariant derivative of the metric is zero.
 
* The properties of a derivative imply that <math>\nabla_{\mathbf v} {\mathbf u}</math> depends on an arbitrarily small neighborhood of a point ''p'' in the same way as e.g. the derivative of a scalar function along a curve at a given point ''p'' depends on an arbitrarily small neighborhood of ''p''.
 
* The information on the neighborhood of a point ''p'' in the covariant derivative can be used to define [[parallel transport]] of a vector. Also the [[Curvature of Riemannian manifolds|curvature]], [[Torsion tensor|torsion]], and [[geodesic]]s may be defined only in terms of the covariant derivative or other related variation on the idea of a [[linear connection]].
 
==Informal definition using an embedding into Euclidean space==
Assume a (pseudo) Riemann manifold is embedded into Euclidean space <math>(\R^n, \langle\cdot;\cdot\rangle)</math> via a (twice continuously) differentiable mapping <math>\vec\Psi : \R^d \supset U \rightarrow \R^n</math> such that the tangent space at <math>\vec\Psi(p) \in M</math> is spanned by the vectors
:<math>\left\lbrace \left. \frac{\partial\vec\Psi}{\partial x^i} \right|_p : i \in \lbrace1, \dots d\rbrace\right\rbrace</math>
 
and the scalar product on <math>\R^n</math> is compatible with the metric on ''M'':  <math>g_{ij} = \left\langle \frac{\partial\vec\Psi}{\partial x^i} ; \frac{\partial\vec\Psi}{\partial x^j} \right\rangle</math>. (Since the manifold metric is always assumed to be regular, the compatibility condition implies linear independence of the partial derivative tangent vectors.)
 
For a tangent vector field
:<math>\vec V = v^j \frac{\partial \vec\Psi}{\partial x^j}\quad</math> one has <math>\quad\frac{\partial\vec V}{\partial x^i} = \frac{\partial v^j}{\partial x^i}  \frac{\partial\vec \Psi}{\partial x^j}  +  v^j \frac{\partial^2 \vec\Psi}{\partial x^i \, \partial x^j} </math>.
The last term is not tangential to ''M'', but can be expressed as a linear combination of the tangent space base vectors using the [[Christoffel symbols]] as linear factors plus a non-tangent vector:
:<math>
\frac{\partial^2 \vec\Psi}{\partial x^i \, \partial x^j}  = \Gamma^k{}_{ij} \frac{\partial\vec\Psi}{\partial x^k} + \vec n
</math>.  
The covariant derivative is defined as just a tangential portion of the usual derivative:
:<math>
\nabla_i \vec V := \frac{\partial\vec V}{\partial x^i} - \vec n = \left( \frac{\partial v^k}{\partial x^i} + v^j \Gamma^k{}_{ij} \right) \frac{\partial\vec\Psi}{\partial x^k}.
</math>
In the case of the [[Levi-Civita connection]] <math>\vec n</math> is required to be orthogonal to tangent space, so
:<math>
\left\langle  \frac{\partial^2 \vec\Psi}{\partial x^i \, \partial x^j} ; \frac{\partial\vec \Psi}{\partial x^l} \right\rangle = \Gamma^k{}_{ij}  \left\langle \frac{\partial\vec\Psi}{\partial x^k} ; \frac{\partial\vec\Psi}{\partial x^l} \right\rangle =  \Gamma^k{}_{ij} \, g_{kl}
</math>.
On the other hand
:<math>
\frac{\partial g_{ab}}{\partial x^c} = \left\langle \frac{\partial^2 \vec\Psi}{ \partial x^c \, \partial x^a} ; \frac{\partial \vec\Psi}{\partial x^b} \right\rangle +  \left\langle \frac{\partial \vec\Psi}{\partial x^a} ; \frac{\partial^2 \vec\Psi}{ \partial x^c \, \partial x^b} \right\rangle
</math>
implies (using the symmetry of the scalar product and swapping the order of partial differentiations)
:<math>
\frac{\partial g_{jk}}{\partial x^i} + \frac{\partial g_{ki}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^k} = 2\left\langle  \frac{\partial^2 \vec\Psi}{\partial x^i \, \partial x^j} ; \frac{\partial\vec \Psi}{\partial x^k} \right\rangle 
</math>
and yields the Christoffel symbols for the Levi-Civita connection in terms of the metric:
:<math>
g_{kl} \Gamma^k{}_{ij} = \frac{1}{2} \left( \frac{\partial g_{jl}}{\partial x^i} + \frac{\partial g_{li}}{\partial x^j}- \frac{\partial g_{ij}}{\partial x^l}\right).
</math>
 
==Formal definition==
A covariant derivative is a [[connection (vector bundle)|(Koszul) connection]] on the [[tangent bundle]] and other [[tensor bundle]]s. Thus it has a certain behavior on functions, on vector fields, on the duals of vector fields (i.e., [[cotangent space|covector]] fields), and most generally of all, on arbitrary [[tensor field]]s.
 
===Functions===
Given a function <math>f\,</math>, the covariant derivative <math>\nabla_{\mathbf v}f</math> coincides with the normal differentiation of a real function in the direction of the vector '''v''', usually denoted by <math>{\mathbf v}f</math> and by <math>df({\mathbf v})</math>.
 
===Vector fields===
A '''covariant derivative''' <math>\nabla</math> of a vector field <math>{\mathbf u}</math> in the direction of the vector <math>{\mathbf v} </math> denoted <math>\nabla_{\mathbf v} {\mathbf u}</math> is defined by the following properties for any vector '''v''', vector fields '''u, w''' and scalar functions ''f'' and ''g'':
# <math>\nabla_{\mathbf v} {\mathbf u}</math> is algebraically linear in <math>{\mathbf v}</math> so <math>\nabla_{f{\mathbf v}+g{\mathbf w}} {\mathbf u}=f\nabla_{\mathbf v} {\mathbf u}+g\nabla_{\mathbf w} {\mathbf u}</math>
# <math>\nabla_{\mathbf v} {\mathbf u}</math> is additive in <math>{\mathbf u}</math> so <math>\nabla_{\mathbf v}({\mathbf u}+{\mathbf w})=\nabla_{\mathbf v} {\mathbf u}+\nabla_{\mathbf v} {\mathbf w}</math>
# <math>\nabla_{\mathbf v} {\mathbf u}</math> obeys the [[product rule]], i.e. <math>\nabla_{\mathbf v} f{\mathbf u}=f\nabla_{\mathbf v} {\mathbf u}+{\mathbf u}\nabla_{\mathbf v}f</math> where <math>\nabla_{\mathbf v}f</math> is defined above.
 
Note that <math>\nabla_{\mathbf v} {\mathbf u}</math> at point ''p'' depends on the value of '''v''' at ''p'' and on values of '''u''' in a neighbourhood of ''p'' because of the last property, the product rule.
 
===Covector fields===
Given a field of [[Cotangent space|covectors]] (or [[one-form]]) <math>\alpha</math>, its covariant derivative <math>\nabla_{\mathbf v}\alpha</math> can be defined using the following identity which is satisfied for all vector fields '''u'''
:<math>(\nabla_{\mathbf v}\alpha)({\mathbf u})=\nabla_{\mathbf v}(\alpha({\mathbf u}))-\alpha(\nabla_{\mathbf v}{\mathbf u}).</math>
The covariant derivative of a covector field along a vector field '''v''' is again a covector field.
 
===Tensor fields===
Once the covariant derivative is defined for fields of vectors and covectors it can be defined for arbitrary [[Tensor (intrinsic definition)|tensor]] fields using the following identities where <math>\varphi</math> and <math>\psi\,</math> are any two tensors:
:<math>\nabla_{\mathbf v}(\varphi\otimes\psi)=(\nabla_{\mathbf v}\varphi)\otimes\psi+\varphi\otimes(\nabla_{\mathbf v}\psi),</math>
and if <math>\varphi</math> and <math>\psi</math> are tensor fields of the same tensor bundle then
:<math>\nabla_{\mathbf v}(\varphi+\psi)=\nabla_{\mathbf v}\varphi+\nabla_{\mathbf v}\psi.</math>
The covariant derivative of a tensor field along a vector field '''v''' is again a tensor field of the same type.
 
Explicitly, let ''T'' be a tensor field of type (''p'',''q''). Consider ''T'' to be a differentiable [[multilinear map]] of [[smooth function|smooth]] [[section (fiber bundle)|sections]] α<sup>1</sup>, α<sup>2</sup>, ..., α<sup>q</sup> of the cotangent bundle ''T*M'' and of sections ''X''<sub>1</sub>, ''X''<sub>2</sub>, ... ''X''<sub>p</sub> of the [[tangent bundle]] ''TM'', written ''T''(α<sup>1</sup>, α<sup>2</sup>, ..., ''X''<sub>1</sub>, ''X''<sub>2</sub>, ...) into '''R'''. The covariant derivative of ''T'' along ''Y'' is given by the formula
 
:<math>(\nabla_Y T)(\alpha_1, \alpha_2, \ldots, X_1, X_2, \ldots) =Y(T(\alpha_1,\alpha_2,\ldots,X_1,X_2,\ldots))</math>
::<math>- T(\nabla_Y\alpha_1, \alpha_2, \ldots, X_1, X_2, \ldots)
- T(\alpha_1, \nabla_Y\alpha_2, \ldots, X_1, X_2, \ldots) -\ldots </math>
::<math>- T(\alpha_1, \alpha_2, \ldots, \nabla_YX_1, X_2, \ldots)
- T(\alpha_1, \alpha_2, \ldots, X_1, \nabla_YX_2, \ldots) - \ldots
</math>
 
==Coordinate description==
{{Dablink|This section uses the [[Einstein summation convention]].}}
Given coordinate functions
: <math>x^i,\ i=0,1,2,\dots</math>,
any [[tangent vector]] can be described by its components in the basis
: <math>\mathbf{e}_i={\partial\over\partial x^i}</math>.
The covariant derivative of a basis vector along a basis vector is again a vector and so can be expressed as a linear combination <math>\Gamma^k {\mathbf e}_k\,</math>.
To specify the covariant derivative it is enough to specify the covariant derivative of each basis vector field <math>{\mathbf e}_j\,</math> along <math>{\mathbf e}_i\,</math>.
:<math> \nabla_{{\mathbf e}_i} {\mathbf e}_j =  \Gamma^k {}_{i j} {\mathbf e}_k,</math>
the coefficients  <math>\Gamma^k_{\ i j}</math> are called '''[[Christoffel symbols]]'''.
Then using the rules in the definition, we find that for general vector fields <math>{\mathbf v}= v^ie_i</math> and <math>{\mathbf u}= u^je_j</math> we get
:<math> \nabla_{\mathbf v} {\mathbf u} = \nabla_{v^i {\mathbf e}_i} u^j {\mathbf e}_j = v^i \nabla_{{\mathbf e}_i}  u^j{\mathbf e}_j = v^i u^j \nabla_{{\mathbf e}_i} {\mathbf e}_j + v^i {\mathbf e}_j \nabla_{{\mathbf e}_i} u^j = v^i u^j \Gamma^k {}_{i j}{\mathbf e}_k+v^i{\partial u^j\over\partial x^i} {\mathbf e}_j </math>
so
:<math> \nabla_{\mathbf v} {\mathbf u} = \left(v^i u^j \Gamma^k {}_{i j}+v^i{\partial u^k\over\partial x^i}\right){\mathbf e}_k</math>
The first term in this formula is responsible for "twisting" the coordinate system with respect to the covariant derivative and the second for changes of components of the vector field ''u''. In particular
:<math>\nabla_{{\mathbf e}_j} {\mathbf u}=\nabla_j {\mathbf u} = \left( \frac{\partial u^i}{\partial x^j} + u^k \Gamma^i {}_{jk} \right) {\mathbf e}_i  </math>
In words: the covariant derivative is the usual derivative along the coordinates with correction terms which tell how the coordinates change.
 
The covariant derivative of a type (''r'',''s'') tensor field along <math>e_c</math> is given by the expression:
 
:<math> (\nabla_c T)^{a_1 \ldots a_r}{}_{b_1 \ldots b_s} = \frac{\partial}{\partial x^c}T^{a_1 \ldots a_r}{}_{b_1 \ldots b_s}+\,\Gamma ^{a_1}{}_{dc} T ^{d \ldots a_r}{}_{b_1 \ldots b_s} + \cdots + \Gamma ^{a_r}{}_{dc} T ^{a_1 \ldots a_{r-1}d}{}_{b_1 \ldots b_s} </math>
::::::::<math> -\,\Gamma ^d {}_{b_1 c} T ^{a_1 \ldots a_r}{}_{d \ldots b_s} - \cdots - \Gamma ^d {}_{b_s c} T ^{a_1 \ldots a_r}{}_{b_1 \ldots b_{s-1} d}.
</math>
 
Or, in words: take the partial derivative of the tensor and add: a <math>+\Gamma^{a_i}{}_{dc}</math> for every upper index <math>a_i</math>, and a <math>-\Gamma^{d}{}_{b_ic}</math> for every lower index <math>b_i</math>.
 
If instead of a tensor, one is trying to differentiate a ''[[tensor density]]'' (of weight +1), then you also add a term
:<math>-\Gamma^d{}_{d c} T^{a_1 \ldots a_r}{}_{b_1 \ldots b_s}.</math>
If it is a tensor density of weight ''W'', then multiply that term by ''W''.
For example, <math>\sqrt{-g}</math> is a scalar density (of weight +1), so we get:
:<math>(\sqrt{-g})_{;c} = (\sqrt{-g})_{,c} - \sqrt{-g}\,\Gamma^{d}{}_{d c}</math>
where semicolon ";" indicates covariant differentiation and comma "," indicates partial differentiation. Incidentally, this particular expression is equal to zero, because the covariant derivative of a function solely of the metric is always zero.
 
==Examples==
For a scalar field <math>\displaystyle \phi\,</math>, covariant differentiation is simply partial differentiation:
:<math>\displaystyle \phi_{;a}\equiv \partial_a \phi</math>
 
For a contravariant vector field <math>\lambda^a\,</math>, we have:
:<math>\lambda^a{}_{;b}\equiv \partial_b \lambda^a+\Gamma^a{}_{bc}\lambda^c</math>
 
For a covariant vector field <math>\lambda_a\,</math>, we have:
:<math>\lambda_{a;c}\equiv \partial_c \lambda_a-\Gamma^b{}_{c a}\lambda_b</math>
 
For a type (2,0) tensor field <math>\tau^{a b}\,</math>, we have:
:<math>\tau^{a b}{}_{;c}\equiv \partial_c \tau^{a b}+\Gamma^a{}_{c d}\tau^{d b}+\Gamma^b{}_{c d}\tau^{a d}</math>
 
For a type (0,2) tensor field <math>\tau_{a b}\,</math>, we have:
:<math>\tau_{a b ;c}\equiv \partial_c \tau_{a b}-\Gamma^d{}_{c a}\tau_{d b}-\Gamma^d{}_{c b}\tau_{a d}</math>
 
For a type (1,1) tensor field <math>\tau^{a}{}_{b}\,</math>, we have:
:<math>\tau^{a}{}_{b;c}\equiv \partial_c \tau^{a}{}_{b}+\Gamma^a{}_{c d}\tau^d{}_b-\Gamma^d{}_{c b}\tau^{a}{}_{d}</math>
 
The notation above is meant in the sense
:<math>\tau^{a b}{}_{;c}\equiv (\nabla_{{\mathbf e}_c}\tau)^{a b}</math>
 
One must always remember that covariant derivatives do not commute, i.e. <math>\lambda_{a;bc}\neq\lambda_{a;cb}\,</math>. It is actually easy to show that:
:<math> \lambda_{a;bc}-\lambda_{a;cb}=R^d{}_{abc}\lambda_d</math>
where <math>R^d{}_{abc} \,</math> is the [[Riemann tensor]]. Similarly,
:<math> \lambda^a{}_{;bc}-\lambda^a{}_{;cb}=-R^a{}_{dbc}\lambda^d</math>
and
:<math> \tau^{ab}{}_{;cd}-\tau^{ab}{}_{;dc}=-R^a{}_{ecd}\tau^{eb}-R^b{}_{ecd}\tau^{ae}</math>
The latter can be shown by taking (without loss of generality) that <math>\tau^{ab}=\lambda^a \mu^b \,</math>.
 
==Notation==
In textbooks on physics, the covariant derivative is sometimes simply stated in terms of its components in this equation.
 
Often a notation is used in which the covariant derivative is given with a [[semicolon]], while a normal [[partial derivative]] is indicated by a [[comma]]. In this notation we write the same as:
:<math>
          \nabla_{e_j} {\mathbf v} \ \stackrel{\mathrm{def}}{=}\  v^s {}_{;j}e_s \;\;\;\;\;\;
          v^i {}_{;j}  =
          v^i {}_{,j} + v^k\Gamma^i {}_{k j}
</math>
Once again this shows that the covariant derivative of a vector field is not just simply obtained by differentiating to the coordinates <math> v^i {}_{,j}</math>, but also depends on the vector '''v''' itself through <math> v^k\Gamma^i {}_{k j}</math>.
 
In some older texts (notably Adler, Bazin & Schiffer, ''Introduction to General Relativity''), the covariant derivative is denoted by a double pipe:
:<math>
          \nabla_j {\mathbf v} \ \stackrel{\mathrm{def}}{=}\  v^i {}_{||j} \;\;\;\;\;\;
</math>
 
==Derivative along curve==
Since the covariant derivative <math>\nabla_XT</math> of a tensor field <math>T</math> at a point <math>p</math> depends only on value of the vector field <math>X</math> at <math>p</math> one can define the covariant derivative along a smooth curve <math>\gamma(t)</math> in a manifold:
:<math>D_tT=\nabla_{\dot\gamma(t)}T.</math>
Note that the tensor field <math>T</math> only needs to be defined on the curve <math>\gamma(t)</math> for this definition to make sense.
 
In particular, <math>\dot{\gamma}(t)</math> is a vector field along the curve <math>\gamma</math> itself. If <math>\nabla_{\dot\gamma(t)}\dot\gamma(t)</math> vanishes then the curve is called a geodesic of the covariant derivative. If the covariant derivative is the [[Levi-Civita connection]] of a certain metric then the geodesics for the connection are precisely the [[geodesics]] of the [[Metric tensor|metric]] that are parametrised by arc length.
 
The derivative along a curve is also used to define the [[parallel transport]] along the curve.
 
Sometimes the covariant derivative along a curve is called '''absolute''' or '''intrinsic derivative'''.
 
==Relation to Lie derivative==
A covariant derivative introduces an extra geometric structure on a manifold which allows vectors in neighboring tangent spaces to be compared.  This extra structure is necessary because there is no canonical way to compare vectors from different vector spaces, as is necessary for this generalization of the [[directional derivative]].  There is however another generalization of directional derivatives which ''is'' canonical: the [[Lie derivative]].  The Lie derivative evaluates the change of one vector field along the flow of another vector field.  Thus, one must know both vector fields in an open neighborhood.  The covariant derivative on the other hand introduces its own change for vectors in a given direction, and it only depends on the vector direction at a single point, rather than a vector field in an open neighborhood of a point.  In other words, the covariant derivative is linear (over ''C''<sup>∞</sup>(''M'')) in the direction argument, while the Lie derivative is linear in neither argument.
 
Note that the antisymmetrized covariant derivative ∇<sub>u</sub>''v'' − ∇<sub>v</sub>''u'', and the Lie derivative ''L''<sub>u</sub>''v'' differ by the [[torsion of connection|torsion of the connection]], so that if a connection is symmetric, then its antisymmetrization ''is'' the Lie derivative.
 
==See also==
<div style="-moz-column-count:2; column-count:2;">
* [[Affine connection]]
* [[Christoffel symbols]]
* [[Connection (algebraic framework)]]
* [[Connection (mathematics)]]
* [[Connection (vector bundle)]]
* [[Connection form]]
* [[Exterior covariant derivative]]
* [[Gauge covariant derivative]]
* [[Introduction to mathematics of general relativity]]
* [[Levi-Civita connection]]
* [[Parallel transport]]
* [[Ricci calculus]]
* [[Tensor derivative (continuum mechanics)]]
</div>
 
==Notes==
{{Reflist}}
 
==References==
*{{Cite book| author=Kobayashi, Shoshichi and Nomizu, Katsumi | title = [[Foundations of Differential Geometry]], Vol. 1 | publisher=[[Wiley Interscience]] | year=1996 (New edition) |isbn = 0-471-15733-3}}
*{{springer|id=c/c026870|title=Covariant differentiation|author=I.Kh. Sabitov}}
*{{Cite book|first=Shlomo|last=Sternberg|title=Lectures on Differential Geometry|year=1964|publisher=Prentice-Hall}}
*{{Cite book|first=Michael|last=Spivak|title=A Comprehensive Introduction to Differential Geometry (Volume Two)|publisher=Publish or Perish, Inc.|year=1999}}
 
{{tensors}}
 
{{DEFAULTSORT:Covariant Derivative}}
[[Category:Differential geometry]]
[[Category:Riemannian geometry]]
[[Category:Connection (mathematics)]]
[[Category:Mathematical methods in general relativity]]
[[Category:Solid mechanics]]

Revision as of 19:13, 7 October 2012

29 yr old Orthopaedic Surgeon Grippo from Saint-Paul, spends time with interests including model railways, top property developers in singapore developers in singapore and dolls. Finished a cruise ship experience that included passing by  Runic Stones and Church.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean derivative along a tangent vector onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

This article presents an introduction to the covariant derivative of a vector field with respect to a vector field, both in a coordinate free language and using a local coordinate system and the traditional index notation. The covariant derivative of a tensor field is presented as an extension of the same concept. The covariant derivative generalizes straightforwardly to a notion of differentiation associated to a connection on a vector bundle, also known as a Koszul connection.

Introduction and history

Historically, at the turn of the 20th century, the covariant derivative was introduced by Gregorio Ricci-Curbastro and Tullio Levi-Civita[1] in the theory of Riemannian and pseudo-Riemannian geometry. Ricci and Levi-Civita (following ideas of Elwin Bruno Christoffel) observed that the Christoffel symbols used to define the curvature[2][3] could also provide a notion of differentiation which generalized the classical directional derivative of vector fields on a manifold. This new derivative – the Levi-Civita connection – was covariant in the sense that it satisfied Riemann's requirement that objects in geometry should be independent of their description in a particular coordinate system.

It was soon noted by other mathematicians, prominent among these being Hermann Weyl, Jan Arnoldus Schouten, and Élie Cartan,[4] that a covariant derivative could be defined abstractly without the presence of a metric. The crucial feature was not a particular dependence on the metric, but that the Christoffel symbols satisfied a certain precise second order transformation law. This transformation law could serve as a starting point for defining the derivative in a covariant manner. Thus the theory of covariant differentiation forked off from the strictly Riemannian context to include a wider range of possible geometries.

In the 1940s, practitioners of differential geometry began introducing other notions of covariant differentiation in general vector bundles which were, in contrast to the classical bundles of interest to geometers, not part of the tensor analysis of the manifold. By and large, these generalized covariant derivatives had to be specified ad hoc by some version of the connection concept. In 1950, Jean-Louis Koszul unified these new ideas of covariant differentiation in a vector bundle by means of what is known today as a Koszul connection [5] or a connection on a vector bundle. Using ideas from Lie algebra cohomology, Koszul successfully converted many of the analytic features of covariant differentiation into algebraic ones. In particular, Koszul connections eliminated the need for awkward manipulations of Christoffel symbols (and other analogous non-tensorial) objects in differential geometry. Thus they quickly supplanted the classical notion of covariant derivative in many post-1950 treatments of the subject.

Motivation

The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, uv, which takes as its inputs: (1) a vector, u, defined at a point P, and (2) a vector field, v, defined in a neighborhood of P.[6] The output is the vector uv(P), also at the point P. The primary difference from the usual directional derivative is that uv must, in a certain precise sense, be independent of the manner in which it is expressed in a coordinate system.

A vector may be described as a list of numbers in terms of a basis, but as a geometrical object a vector retains its own identity regardless of how one chooses to describe it in a basis. This persistence of identity is reflected in the fact that when a vector is written in one basis, and then the basis is changed, the vector transforms according to a change of basis formula. Such a transformation law is known as a covariant transformation. The covariant derivative is required to transform, under a change in coordinates, in the same way as a vector does: the covariant derivative must change by a covariant transformation (hence the name).

In the case of Euclidean space, one tends to define the derivative of a vector field in terms of the difference between two vectors at two nearby points. In such a system one translates one of the vectors to the origin of the other, keeping it parallel. With a Cartesian (fixed orthonormal) coordinate system we thus obtain the simplest example: covariant derivative which is obtained by taking the derivative of the components.

In the general case, however, one must take into account the change of the coordinate system. For example, if the same covariant derivative is written in polar coordinates in a two dimensional Euclidean plane, then it contains extra terms that describe how the coordinate grid itself "rotates". In other cases the extra terms describe how the coordinate grid expands, contracts, twists, interweaves, etc.

Consider the example of moving along a curve γ(t) in the Euclidean plane. In polar coordinates, γ may be written in terms of its radial and angular coordinates by γ(t) = (r(t), θ(t)). A vector at a particular time t[7] (for instance, the acceleration of the curve) is expressed in terms of (er,eθ), where er and eθ are unit tangent vectors for the polar coordinates, serving as a basis to decompose a vector in terms of radial and tangential components. At a slightly later time, the new basis in polar coordinates appears slightly rotated with respect to the first set. The covariant derivative of the basis vectors (the Christoffel symbols) serve to express this change. 50 year old Petroleum Engineer Kull from Dawson Creek, spends time with interests such as house brewing, property developers in singapore condo launch and camping. Discovers the beauty in planing a trip to places around the entire world, recently only coming back from .

In a curved space, such as the surface of the Earth (regarded as a sphere), the translation is not well defined and its analog, parallel transport, depends on the path along which the vector is translated.

A vector e on a globe on the equator in Q is directed to the north. Suppose we parallel transport the vector first along the equator until P and then (keeping it parallel to itself) drag it along a meridian to the pole N and (keeping the direction there) subsequently transport it along another meridian back to Q. Then we notice that the parallel-transported vector along a closed circuit does not return as the same vector; instead, it has another orientation. This would not happen in Euclidean space and is caused by the curvature of the surface of the globe. The same effect can be noticed if we drag the vector along an infinitesimally small closed surface subsequently along two directions and then back. The infinitesimal change of the vector is a measure of the curvature. 50 year old Petroleum Engineer Kull from Dawson Creek, spends time with interests such as house brewing, property developers in singapore condo launch and camping. Discovers the beauty in planing a trip to places around the entire world, recently only coming back from .

Remarks

  • The definition of the covariant derivative does not use the metric in space. However, for each metric there is a unique torsion-free covariant derivative called the Levi-Civita connection such that the covariant derivative of the metric is zero.
  • The properties of a derivative imply that vu depends on an arbitrarily small neighborhood of a point p in the same way as e.g. the derivative of a scalar function along a curve at a given point p depends on an arbitrarily small neighborhood of p.

Informal definition using an embedding into Euclidean space

Assume a (pseudo) Riemann manifold is embedded into Euclidean space (n,;) via a (twice continuously) differentiable mapping Ψ:dUn such that the tangent space at Ψ(p)M is spanned by the vectors

{Ψxi|p:i{1,d}}

and the scalar product on n is compatible with the metric on M: gij=Ψxi;Ψxj. (Since the manifold metric is always assumed to be regular, the compatibility condition implies linear independence of the partial derivative tangent vectors.)

For a tangent vector field

V=vjΨxj one has Vxi=vjxiΨxj+vj2Ψxixj.

The last term is not tangential to M, but can be expressed as a linear combination of the tangent space base vectors using the Christoffel symbols as linear factors plus a non-tangent vector:

2Ψxixj=ΓkijΨxk+n.

The covariant derivative is defined as just a tangential portion of the usual derivative:

iV:=Vxin=(vkxi+vjΓkij)Ψxk.

In the case of the Levi-Civita connection n is required to be orthogonal to tangent space, so

2Ψxixj;Ψxl=ΓkijΨxk;Ψxl=Γkijgkl.

On the other hand

gabxc=2Ψxcxa;Ψxb+Ψxa;2Ψxcxb

implies (using the symmetry of the scalar product and swapping the order of partial differentiations)

gjkxi+gkixjgijxk=22Ψxixj;Ψxk

and yields the Christoffel symbols for the Levi-Civita connection in terms of the metric:

gklΓkij=12(gjlxi+glixjgijxl).

Formal definition

A covariant derivative is a (Koszul) connection on the tangent bundle and other tensor bundles. Thus it has a certain behavior on functions, on vector fields, on the duals of vector fields (i.e., covector fields), and most generally of all, on arbitrary tensor fields.

Functions

Given a function f, the covariant derivative vf coincides with the normal differentiation of a real function in the direction of the vector v, usually denoted by vf and by df(v).

Vector fields

A covariant derivative of a vector field u in the direction of the vector v denoted vu is defined by the following properties for any vector v, vector fields u, w and scalar functions f and g:

  1. vu is algebraically linear in v so fv+gwu=fvu+gwu
  2. vu is additive in u so v(u+w)=vu+vw
  3. vu obeys the product rule, i.e. vfu=fvu+uvf where vf is defined above.

Note that vu at point p depends on the value of v at p and on values of u in a neighbourhood of p because of the last property, the product rule.

Covector fields

Given a field of covectors (or one-form) α, its covariant derivative vα can be defined using the following identity which is satisfied for all vector fields u

(vα)(u)=v(α(u))α(vu).

The covariant derivative of a covector field along a vector field v is again a covector field.

Tensor fields

Once the covariant derivative is defined for fields of vectors and covectors it can be defined for arbitrary tensor fields using the following identities where φ and ψ are any two tensors:

v(φψ)=(vφ)ψ+φ(vψ),

and if φ and ψ are tensor fields of the same tensor bundle then

v(φ+ψ)=vφ+vψ.

The covariant derivative of a tensor field along a vector field v is again a tensor field of the same type.

Explicitly, let T be a tensor field of type (p,q). Consider T to be a differentiable multilinear map of smooth sections α1, α2, ..., αq of the cotangent bundle T*M and of sections X1, X2, ... Xp of the tangent bundle TM, written T1, α2, ..., X1, X2, ...) into R. The covariant derivative of T along Y is given by the formula

(YT)(α1,α2,,X1,X2,)=Y(T(α1,α2,,X1,X2,))
T(Yα1,α2,,X1,X2,)T(α1,Yα2,,X1,X2,)
T(α1,α2,,YX1,X2,)T(α1,α2,,X1,YX2,)

Coordinate description

Template:Dablink Given coordinate functions

xi,i=0,1,2,,

any tangent vector can be described by its components in the basis

ei=xi.

The covariant derivative of a basis vector along a basis vector is again a vector and so can be expressed as a linear combination Γkek. To specify the covariant derivative it is enough to specify the covariant derivative of each basis vector field ej along ei.

eiej=Γkijek,

the coefficients Γijk are called Christoffel symbols. Then using the rules in the definition, we find that for general vector fields v=viei and u=ujej we get

vu=vieiujej=vieiujej=viujeiej+viejeiuj=viujΓkijek+viujxiej

so

vu=(viujΓkij+viukxi)ek

The first term in this formula is responsible for "twisting" the coordinate system with respect to the covariant derivative and the second for changes of components of the vector field u. In particular

eju=ju=(uixj+ukΓijk)ei

In words: the covariant derivative is the usual derivative along the coordinates with correction terms which tell how the coordinates change.

The covariant derivative of a type (r,s) tensor field along ec is given by the expression:

(cT)a1arb1bs=xcTa1arb1bs+Γa1dcTdarb1bs++ΓardcTa1ar1db1bs
Γdb1cTa1ardbsΓdbscTa1arb1bs1d.

Or, in words: take the partial derivative of the tensor and add: a +Γaidc for every upper index ai, and a Γdbic for every lower index bi.

If instead of a tensor, one is trying to differentiate a tensor density (of weight +1), then you also add a term

ΓddcTa1arb1bs.

If it is a tensor density of weight W, then multiply that term by W. For example, g is a scalar density (of weight +1), so we get:

(g);c=(g),cgΓddc

where semicolon ";" indicates covariant differentiation and comma "," indicates partial differentiation. Incidentally, this particular expression is equal to zero, because the covariant derivative of a function solely of the metric is always zero.

Examples

For a scalar field ϕ, covariant differentiation is simply partial differentiation:

ϕ;aaϕ

For a contravariant vector field λa, we have:

λa;bbλa+Γabcλc

For a covariant vector field λa, we have:

λa;ccλaΓbcaλb

For a type (2,0) tensor field τab, we have:

τab;ccτab+Γacdτdb+Γbcdτad

For a type (0,2) tensor field τab, we have:

τab;ccτabΓdcaτdbΓdcbτad

For a type (1,1) tensor field τab, we have:

τab;ccτab+ΓacdτdbΓdcbτad

The notation above is meant in the sense

τab;c(ecτ)ab

One must always remember that covariant derivatives do not commute, i.e. λa;bcλa;cb. It is actually easy to show that:

λa;bcλa;cb=Rdabcλd

where Rdabc is the Riemann tensor. Similarly,

λa;bcλa;cb=Radbcλd

and

τab;cdτab;dc=RaecdτebRbecdτae

The latter can be shown by taking (without loss of generality) that τab=λaμb.

Notation

In textbooks on physics, the covariant derivative is sometimes simply stated in terms of its components in this equation.

Often a notation is used in which the covariant derivative is given with a semicolon, while a normal partial derivative is indicated by a comma. In this notation we write the same as:

ejv=defvs;jesvi;j=vi,j+vkΓikj

Once again this shows that the covariant derivative of a vector field is not just simply obtained by differentiating to the coordinates vi,j, but also depends on the vector v itself through vkΓikj.

In some older texts (notably Adler, Bazin & Schiffer, Introduction to General Relativity), the covariant derivative is denoted by a double pipe:

jv=defvi||j

Derivative along curve

Since the covariant derivative XT of a tensor field T at a point p depends only on value of the vector field X at p one can define the covariant derivative along a smooth curve γ(t) in a manifold:

DtT=γ˙(t)T.

Note that the tensor field T only needs to be defined on the curve γ(t) for this definition to make sense.

In particular, γ˙(t) is a vector field along the curve γ itself. If γ˙(t)γ˙(t) vanishes then the curve is called a geodesic of the covariant derivative. If the covariant derivative is the Levi-Civita connection of a certain metric then the geodesics for the connection are precisely the geodesics of the metric that are parametrised by arc length.

The derivative along a curve is also used to define the parallel transport along the curve.

Sometimes the covariant derivative along a curve is called absolute or intrinsic derivative.

Relation to Lie derivative

A covariant derivative introduces an extra geometric structure on a manifold which allows vectors in neighboring tangent spaces to be compared. This extra structure is necessary because there is no canonical way to compare vectors from different vector spaces, as is necessary for this generalization of the directional derivative. There is however another generalization of directional derivatives which is canonical: the Lie derivative. The Lie derivative evaluates the change of one vector field along the flow of another vector field. Thus, one must know both vector fields in an open neighborhood. The covariant derivative on the other hand introduces its own change for vectors in a given direction, and it only depends on the vector direction at a single point, rather than a vector field in an open neighborhood of a point. In other words, the covariant derivative is linear (over C(M)) in the direction argument, while the Lie derivative is linear in neither argument.

Note that the antisymmetrized covariant derivative ∇uv − ∇vu, and the Lie derivative Luv differ by the torsion of the connection, so that if a connection is symmetric, then its antisymmetrization is the Lie derivative.

See also

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • Other Sports Official Kull from Drumheller, has hobbies such as telescopes, property developers in singapore and crocheting. Identified some interesting places having spent 4 months at Saloum Delta.

    my web-site http://himerka.com/
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

Template:Tensors

  1. Levi-Civita, T. and Ricci, G. "Méthodes de calcul différential absolu et leurs applications", Math. Ann. B, 54 (1900) 125–201.
  2. Riemann, G.F.B., "Über die Hypothesen, welche der Geomtrie zu Grunde liegen", Gesammelte Mathematische Werke (1866); reprint, ed. Weber, H.: Dover, New York, 1953.
  3. Christoffel, E.B., "Über die Transformation der homogenen Differentialausdrücke zweiten Grades," J. für die Reine und Angew. Math. 70 (1869), 46–70.
  4. cf. with Cartan, E. "Sur les variétés à connexion affine et la theorie de la relativité généralisée", Annales, Ecole Normale 40 (1923), 325–412.
  5. Koszul, J. L. "Homologie et cohomologie des algebres de Lie", Bulletin de la Société Mathématique 78 (1950) 65–127.
  6. The covariant derivative is also denoted variously by vu, Dvu, or other notations.
  7. In many applications, it may be better not to think of t as corresponding to time, at least for applications in general relativity. It is simply regarded as an abstract parameter varying smoothly and monotonically along the path.